The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins (original) (raw)

References

  1. Owen-Hughes, T. & Workman, J. L. Experimental analysis of chromatin function in transcription control. Crit. Rev. Euk. Gene. Exp. 4, 403–441 (1994).
    CAS Google Scholar
  2. Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683 (1996).
    Article CAS Google Scholar
  3. Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998).
    Article CAS Google Scholar
  4. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).
    Article CAS Google Scholar
  5. Orphanides, G., LeRoy, G., Chang, C.-H., Luse, D. S. & Reinberg, D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105–116 (1998).
    Article CAS Google Scholar
  6. LeRoy, G., Orphanides, G., Lane, W. S. & Reinberg, D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282, 1900–1904 (1998).
    Article ADS CAS Google Scholar
  7. Malone, E. A., Clarke, C. D., Chiang, A. & Winston, F. Mutations in SPT16/CDC68 suppress cis- and trans- acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 5710–5717 (1991).
    Article CAS Google Scholar
  8. Rowley, A., Singer, R. A. & Johnston, G. C. CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11, 5718–5726 (1991).
    Article CAS Google Scholar
  9. Xu, Q., Singer, R. A. & Johnston, G. C. SugI modulates yeast transcription activation by Cdc68. Mol. Cell. Biol. 15, 6025–6035 (1995).
    Article CAS Google Scholar
  10. Prendergast, J. A. et al. Size selection identifies new genes that regulate Saccharomyces cerevisiae cell proliferation. Genetics 124, 81–90 (1990).
    CAS PubMed PubMed Central Google Scholar
  11. Lycan, D., Mikesell, G., Bunger, M. & Breeden, L. Differential effects of Cdc68 on cell cycle-regulated promoters in Saccaromyces cerevisiae. Mol. Cell. Biol. 14, 7455–7465 (1994).
    Article CAS Google Scholar
  12. Exinger, F. & Lacroute, F. 6-Azauracil inhibition of GTP biosynthesis in Saccaromyces cerevisiae. Curr. Genet. 22, 9–11 (1992).
    Article CAS Google Scholar
  13. Evans, D. R. H. et al. The yeast protein complex containing cdc68 and pob3 mediates core-promoter repression through the cdc68 N-terminal domain. Genetics 150, 1393–1405 (1998).
    CAS PubMed PubMed Central Google Scholar
  14. Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II. Genes Dev. 12, 357–369 (1998).
    Article CAS Google Scholar
  15. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).
    Article CAS Google Scholar
  16. Powell, W. & Reines, D. Mutations in the second largest subunit of RNA polymerase II cause 6-azauracil sensitivity in yeast and increased transcriptional arrest in vitro. J. Biol. Chem. 271, 6866–6873 (1996).
    Article CAS Google Scholar
  17. Bruhn, S. L., Pil, M., Essigman, J. M., Housman, D. E. & Lippard, S. J. Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes distortions to DNA caused by binding of the anticancer agent cisplatin. Proc. Natl Acad. Sci. USA 89, 2307–2311 (1992).
    Article ADS CAS Google Scholar
  18. Shirakata, M. et al. HMG1-related DNA binding protein isolated with V-(D)-J recombination signal probes. Mol. Cell. Biol. 11, 4528–4536 (1991).
    Article CAS Google Scholar
  19. Wittmeyer, J. & Formosa, T. The Saccharomyces cerevisiae DNA polymerase α catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein. Mol. Cell. Biol. 17, 4178–4190 (1997).
    Article CAS Google Scholar
  20. Brewster, N. K., Johnston, G. C. & Singer, R. A. Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. J. Biol. Chem. 21, 21972–21979 (1998).
    Article Google Scholar
  21. Bustin, M. & Reeves, R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucl. Acid Res. Mol. Biol. 54, 35–100 (1996).
    Article CAS Google Scholar
  22. Baer, B. W. & Rhodes, D. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature 301, 482–488 (1983).
    Article ADS CAS Google Scholar
  23. Hansen, J. C. & Wolffe, A. P. Arole for histones H2A/H2B in chromatin folding and transcriptional repression. Proc. Natl Sci. Acad. 91, 2339–2343 (1994).
    Article ADS CAS Google Scholar
  24. Santisteban, M. S., Arents, G., Moudrianakis, E. N. & Smith, M. M. Histone octamer function in vivo : mutations in the dimer–tetramer interfaces disrupt both gene activation and repression. EMBO J. 16, 2493–2506 (1997).
    Article CAS Google Scholar
  25. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).
    Article CAS Google Scholar
  26. Walter, P. P., Owen-Hughes, T. A., Cote, J. & Workman, J. L. Stimulation of transcription factor binding and histone displacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer. Mol. Cell. Biol. 15, 6178–6187 (1995).
    Article CAS Google Scholar
  27. Hager, D. A. & Burgess, R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal. Biochem. 109, 76–86 (1980).
    Article CAS Google Scholar
  28. Nash, H. M. et al. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 6, 968–980 (1996).
    Article CAS Google Scholar
  29. Eng, J. K., McCormick, A. L. & Yates, J. R. I. An approach to correlate tandem mass spectral data of peptides with amino-acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).
    Article CAS Google Scholar

Download references