Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F (original) (raw)

References

  1. Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280, 558–563 (1979).
    Article ADS CAS Google Scholar
  2. Nicholson, L. K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry 31, 5253–5263 (1992).
    Article CAS Google Scholar
  3. Wüthrich, K. & Wagner, G. NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor. FEBS Lett. 50, 265–268 (1975).
    Article Google Scholar
  4. Frauenfelder, H., Parak, F. & Young, R. D. Conformational substates in proteins. Annu. Rev. Biophys. Chem. 17, 451–479 (1988).
    Article CAS Google Scholar
  5. Nicholson, L. K. et al. Flexibility and function in HIV1 protease. Nature Struct. Biol. 2, 274–280 (1995).
    Article CAS Google Scholar
  6. Kay, L. E. Protein dynamics from NMR. Nature Struct. Biol. 5, 145–152 (1998).
    Google Scholar
  7. Burbulys, D., Trach, K. A. & Hoch, J. A. Initiation of sporulation in Bacillus subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552 (1991).
    Article CAS Google Scholar
  8. Tzeng, Y-L. & Hoch, J. A. Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay protein revealed by alanine scanning mutagenesis. J. Mol. Biol. 272, 200–212 (1997).
    Article CAS Google Scholar
  9. Tzeng, Y-L., Feher, V. A., Cavanagh, J., Perego, M. & Hoch, J. A. Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB. Biochemistry 37, 16538–16545 (1998).
    Article CAS Google Scholar
  10. Feher, V. A. et al. High resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition. Biochemistry 36, 10015–10025 (1997).
    Article CAS Google Scholar
  11. Kay, L. E., Torchia, D. A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy. Application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).
    Article CAS Google Scholar
  12. Clore, G. M. et al. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 112, 4989–4991 (1990).
    Article CAS Google Scholar
  13. Mandel, A. M., Akke, M. & Palmer, A. G. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163 (1995).
    Article CAS Google Scholar
  14. Stone, M. J. et al. Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry 31, 4394–4406 (1992).
    Article CAS Google Scholar
  15. . Tjandra, N., Feller, S. E., Pastor, R. W. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566 (1995).
    Article CAS Google Scholar
  16. Lee, L., Rance, M., Chazin, W. J. & Palmer, A. G. Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J. Biomol. NMR 9, 287–298 (1997).
    Article CAS Google Scholar
  17. Volz, K. in Two Component Signal Transduction (eds Hoch, J. A. & Silhavy, T. J.) 53–64 (American Society for Microbiology, Washington DC, (1995).
    Google Scholar
  18. Parkinson, J. S. & Kofoid, E. C. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26, 71–112 (1992).
    Article CAS Google Scholar
  19. Feher, V. A., Tzeng, Y.-L., Hoch, J. A. & Cavanagh, J. Identification of communication networks in Spo0F: a model for phosphorylation induced conformational change and implications for activation of multiple domain bacterial response regulators. FEBS Lett. 425, 1–6 (1998).
    Article CAS Google Scholar
  20. Wyss, D. F., Dayie, K. T. & Wagner, G. The counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with the millisecond to microsecond motions. Protein Sci. 6, 534–542 (1997).
    Article CAS Google Scholar
  21. Kriwacki, R. W., Hengst, L., Tennant, L., Reed, S. I. & Wright, P. E. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl Acad. Sci. USA 93, 11504–11509 (1996).
    Article ADS CAS Google Scholar
  22. Gryk, M. R., Jardetzky, O., Klig, L. S. & Yanofsky, C. Flexibility of DNA binding domain of trp repressor required for recognition of different operator sequences. Protein Sci. 5, 1195–1197 (1996).
    Article CAS Google Scholar
  23. Kay, L. E., Muhandiram, D. R., Wolf, G., Shoelson, S. E. & Forman-Kay, J. D. Correlation between binding and dynamics at SH2 domain interface. Nature Struct. Biol. 5, 156–163 (1998).
    Article CAS Google Scholar
  24. Ansari, A. et al. Protein states and proteinquakes. Proc. Natl Acad. Sci. USA 82, 5000–5004 (1985).
    Article ADS CAS Google Scholar
  25. Zhu, X., Rebello, J., Matsumura, P. & Volz, K. Crystal structures of CheY mutants Y106W and T87I/Y106W. CheY activation correlates with movement of residue 106. J. Biol. Chem. 272, 5000–5006 (1997).
    Article CAS Google Scholar
  26. Jiang, M., Bourret, R. B., Simon, M. I. & Volz, K. Uncoupled phosphorylation and activation in bacterial chemotaxis. The 2.3?å structure of an aspartate to lysine mutant at position 13 of CheY. J.Biol. Chem. 272, 11850–11855 (1997).
    Article CAS Google Scholar
  27. Lowry, D. F. et al. Signal transduction in chemotaxis: a propagating conformation change upon phosphorylation of CheY. J. Biol. Chem. 269, 26358–26362 (1994).
    CAS PubMed Google Scholar
  28. Feher, V. A. et al. 1H, 15N, and 13C backbone chemical shift assignments, secondary structure and magnesium binding characteristics of the Bacillus subtilis response regulator, Spo0F, determined by heteronuclear high resolution NMR spectroscopy. Protein Sci. 4, 1801–1814 (1995).
    Article CAS Google Scholar
  29. Farrow, N. A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src Homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).
    Article CAS Google Scholar
  30. Akke, M., Carr, P. A. & Palmer, A. G. Heteronuclear correlation NMR spectroscopy with simultaneous isotope filtration, quadrature detection and sensitivity enhancement using z rotations. J. Magn. Reson. Ser. B 104, 298–302 (1994).
    Article CAS Google Scholar

Download references