Regulation of cell movement is mediated by stretch-activated calcium channels (original) (raw)

References

  1. Stossel, TP. On the crawling of animal cells. Science 260, 1086–1094 (1993).
    Article ADS CAS Google Scholar
  2. Strohmeier, R. & Bereiter-Hahn, J. Control of cell shape and locomotion by external calcium. Exp. Cell Res. 154, 412–420 (1984).
    Article CAS Google Scholar
  3. Citi, S. & Kendrick-Jones, J. Regulations of non-muscle myosin structure and function. BioEssays 7, 155–159 (1987).
    Article CAS Google Scholar
  4. Rees, D. A.et al. Myosin regulation and calcium transients in fibroblast shape change: Attachment and patching. Cell Motil. Cytoskel. 13, 112–122 (1989).
    Article CAS Google Scholar
  5. Condeelis, J. Life at the leading edge: The formation of cell protrusions. Annu. Rev. Cell Biol. 9, 411–444 (1993).
    Article CAS Google Scholar
  6. Hartwig, J. H. & Yin, H. The organization and regulation of the macrophage actin skeleton. Cell Motil. Cytoskel. 10, 117–125 (1988).
    Article CAS Google Scholar
  7. Sjaastad, M. D. & Nelson, W. J. Integrin-mediated calcium signaling and regulation of cell adhesion by intracellular calcium. BioEssays 19, 47–55 (1997).
    Article CAS Google Scholar
  8. Crowley, E. & Horwitz, A. F. Tyrosine phosphorylation and cytoskeletal tension regulate the release of fibroblast adhesions. J. Cell Biol. 131, 525–537 (1995).
    Article CAS Google Scholar
  9. Lee, J. & Jacobson, K. The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes. J. Cell Sci. 110, 2833–2844 (1997).
    CAS Google Scholar
  10. Svitkina, T. M., Verkhovsky, A. B., McQuade, K. M. & Borisy, G. G. Analysis of the actin-myosin II system in fish epidermal keratocytes: Mechanism of cell body translocation. J. Cell Biol. 139, 397–415 (1997).
    Article CAS Google Scholar
  11. Galbraith, CG. & Sheetz, M. P. Relationship between cell shape, traction force, and speed. Mol. Biol. Cell(suppl.) 8, 385 (1997).
    Google Scholar
  12. Anderson, K. I., Wang, Y.-L. & Small, J. V. Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body. J. Cell Biol. 134, 1209–1218 (1996).
    Article CAS Google Scholar
  13. Lee, J., Leonard, M., Oliver, T., Ishihara, A. & Jacobson, K. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127, 1957–1964 (1994).
    Article CAS Google Scholar
  14. Lee, J., Ishihara, A., Theriot, J. A. & Jacobson, K. Principles of locomotion for simple-shaped cells. Nature 362, 167–171 (1993).
    Article ADS CAS Google Scholar
  15. Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991).
    Article ADS CAS Google Scholar
  16. Sachs, F. in Sensory Transduction (eds Corey, D P. & Roper, S.) 242–260 (Rockefeller University Press, New York, 1992).
    Google Scholar
  17. Gustin, M. C., Zhou, X., Martinac, B. & Kung, C. Amechanosensitive ion channel in the yeast plasma membrane. Science 242, 762–765 (1988).
    Article ADS CAS Google Scholar
  18. Hamill, O. P. & McBride, D. W. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl Acad. Sci. USA 89, 7462–7466 (1992).
    Article ADS CAS Google Scholar
  19. Sackin, H. in Molecular Biology of Membrane Transport Disorders (ed. Schultz, S. G.) 201–222 (Plenum, New York, 1996).
    Book Google Scholar
  20. Kolega, J. Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J. Cell Biol. 102, 1400–1411 (1986).
    Article CAS Google Scholar
  21. Pommerenke, H.et al. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur. J. Cell Biol. 70, 157–164 (1996).
    CAS PubMed Google Scholar
  22. Glogauer, M., Ferrier, J. & McCulloch, C. A. G. Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in human fibroblasts. Am. J. Physiol. 269, C1093–C1104 (1995).
    Article CAS Google Scholar
  23. Naruse, K. & Sokabe, M. Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am. J. Physiol. 264, 1037–1044 (1993).
    Article Google Scholar
  24. Chen, W.-T. Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell Biol. 90, 187–200 (1981).
    Article CAS Google Scholar
  25. Hendey, B., Klee, C. B. & Maxfield, F. R. Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin. Science 258, 296–299 (1992).
    Article ADS CAS Google Scholar
  26. Huttenlocher, A.et al. Regulation of cell migration by the calcium-dependent protease calpain. J. Biol. Chem. 272, 32719–32722 (1997).
    Article CAS Google Scholar
  27. Palecek, S. P., Huttenlocher, A., Horwitz, A. F. & Lauffenburger, D. A. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J. Cell Sci. 111, 929–940 (1998).
    CAS Google Scholar
  28. Brundage, R. A., Fogarty, K. E., Tuft, R. A. & Fay, F. S. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254, 703–706 (1991).
    Article ADS CAS Google Scholar
  29. Marks, P. W. & Maxfield, F. R. Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J. Cell Biol. 110, 43–52 (1990).
    Article CAS Google Scholar
  30. Ishihara, A., Gee, K., Schwartz, S., Jacobson, K. & Lee, J. Photoactivation of caged compounds in single, living cells: An application to the study of cell locomotion. Biotechniques 23, 268–274 (1997).
    Article CAS Google Scholar

Download references