2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis (original) (raw)

References

  1. Blankenship, R. E. & Hartman, H. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23, 94–97 (1998).
    Article CAS Google Scholar
  2. Walter, M. R. in Early Life on Earth (ed. Bengtson, S.) 270–286 (Columbia Univ. Press, New York, (1994).
    Google Scholar
  3. Schopf, J. W. Microfossils of the early Archean Apex Chert: New evidence of the antiquity of life. Science 260, 640–646 (1993).
    Article ADS CAS Google Scholar
  4. Buick, R. The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulfate-deficient Archaean lakes. Science 255, 74–77 (1992).
    Article ADS CAS Google Scholar
  5. Schopf, J. W. & Klein, C. The Proterozoic Biosphere. A Multidisciplinary Study (Cambridge Univ. Press, (1992).
    Book Google Scholar
  6. Jürgens, U. J., Simonin, P. & Rohmer, M. Localisation and distribution of hopanoids in membrane systems of the cyanobacterium Synechocystis PCC 6714. FEMS Microbiol. Lett. 92, 285–288 (1992).
    Article Google Scholar
  7. Peters, K. E. & Moldowan, J. M. The Biomarker Guide—Interpreting Molecular Fossils in Sediments and Petroleum (Prentice-Hall, Englewood Cliffs, New Jersey, (1992).
    Google Scholar
  8. Rohmer, M. The biosynthesis of triterpenoids of the hopane series in the eubacteria: a mine of new enzyme reactions. Pure Appl. Chem. 65, 1293–1298 (1993).
    Article CAS Google Scholar
  9. Rohmer, M., Bouvier-Navé, P. & Ourisson, G. Distribution of hopanoid triterpenes in prokaryotes. J.Gen. Microbiol. 130, 1137–1150 (1984).
    CAS Google Scholar
  10. Zundel, M. & Rohmer, M. Prokaryotic triterpenoids 3. The biosynthesis of 2β-methylhopanoids and3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus spp. pasteurianus. Eur. J. Biochem. 150, 35–39 (1985).
    Article CAS Google Scholar
  11. Simonin, P., Jürgens, U. J. & Rohmer, M. Bacterial triterpenoids of the hopane series from the prochlorophyte Prochlorothrix hollandica and their intracellular localisation. Eur. J. Biochem. 241, 865–871 (1996).
    Article CAS Google Scholar
  12. Knani, M., Corpe, W. A. & Rohmer, M. Bacterial hopanoids from pink-pigmented facultative methylotrophs and from green plant surfaces. Microbiology 140, 2755–2759 (1994).
    Article CAS Google Scholar
  13. Vilchèze, C., Llopiz, P., Neunlist, S., Poralla, K. & Rohmer, M. Prokaryotic triterpenoids: new hopanoids from the nitrogen-fixing bacteria Azotobacter vinelandii, Beijerinckia indica and Beijerinckia mobilis. Microbiology 140, 2794–2753 (1994).
    Article Google Scholar
  14. Renoux, J.-M. & Rohmer, M. Prokaryotic triterpenoids. New bacteriohopane tetrol cyclitol ethers from methylotrophic bacterium Methylobacterium organophilum. Eur. J. Biochem. 151, 405–410 (1985).
    Article CAS Google Scholar
  15. Hermann, D. Des biohopanoı¨des aux géohopanoı¨des. Une approche de la formation des fossiles moléculaires de triterpénoı¨ds en série hopane. Thesis, Univ. Haute-Alsace(1995).
  16. Summons, R. E., Jahnke, L. L. & Simoneit, B. R. T. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?): Ciba Foundation Symposium 202 174–194 (Wiley, Chichester, (1996).
    Google Scholar
  17. Summons, R. E. & Jahnke, L. L. in Biomarkers in Sediments and Petroleum (eds Moldowan, J. M., Albrecht, P. & Philp, R. P.) 182–200 (Prentice Hall, Englewood Cliffs, New Jersey, (1992).
    Google Scholar
  18. Summons, R. E. & Walter, M. R. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am. J. Sci. A 290, 212–244 (1990).
    Google Scholar
  19. Bauld, J. in Microbial Mats: Stromatolites (eds Cohen, Y., Castenholz, R. W. & Halverson, H. O.) 39–58 (Alan Liss, New York, (1984).
    Google Scholar
  20. Kenig, F. et al. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochim. Cosmochim. Acta 59, 2999–3015 (1995).
    Article ADS CAS Google Scholar
  21. Golubic, S. in Early Life on Earth: Nobel Symposium No 84 (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, (1994).
    Google Scholar
  22. Hayes, J. M., Summons, R. E., Strauss, H., Des Marais, D. J. & Lambert, I. B. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 81–133 (Cambridge Univ. Press, (1992).
    Book Google Scholar
  23. Buick, R., Rasmussen, B. & Krapez, B. Archean oil: evidence for extensive hydrocarbon generation and migration 2.5–3.5 Ga. AAPG Bull. 82, 50–69 (1998).
    CAS Google Scholar
  24. Price, L. C. Thermal stability of hydrocarbons in nature: limits, evidence, characteristics, and possible controls. Geochim. Cosmochim. Acta 57, 3261–3280 (1993).
    Article ADS CAS Google Scholar
  25. Haug, G. H. et al. Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr. Paleooceanography 13, 427–432 (1998).
    Article ADS Google Scholar
  26. Bisseret, P., Zundel, M. & Rohmer, M. Prokaryotic triterpenoids: 2. 2β-methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoids. Eur. J. Biochem. 150, 29–34 (1985).
    Article CAS Google Scholar
  27. Zhao, N. et al. Structures of two bacteriohopanoids with acyclic pentol side-chains from the cyanobacterium Nostoc PCC 6720. Tetrahedron 52, 2772–2778 (1996).
    Google Scholar
  28. Llopiz, P., Jürgens, U. J. & Rohmer, M. Prokaryotic triterpenoids: Bacteriohopanetetrol glycuronosides from the thermophilic cyanobacterium Synechococcus PCC6907. FEMS Microbiol. Lett. 140, 199–202 (1996).
    Article CAS Google Scholar

Download references