A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation (original) (raw)

References

  1. Kingsley, D. M. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8, 133–146 (1994).
    Article CAS Google Scholar
  2. Moses, H. L. & Serra, R. Regulation of differentiation by TGF-beta. Curr. Opin. Genet. Dev. 6, 581–586 (1996).
    Article CAS Google Scholar
  3. Harland, R. & Gerhart, J. Formation and Function of Spemann's organizer. Annu. Rev. Cell Biol. 13, 611–667 (1997).
    Article CAS Google Scholar
  4. Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).
    Article CAS Google Scholar
  5. Whitman, M. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev. 12, 2445–2462 (1998).
    Article CAS Google Scholar
  6. Bartel, P. & Fields, S. Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol. 254, 241–263 (1995).
    Article CAS Google Scholar
  7. Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. Afamily of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 92, 2563–2567 (1995). [Published erratum appears in Proc. Natl Acad. Sci. USA 92, 5249 (1995). ]
    Google Scholar
  8. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
    Article CAS Google Scholar
  9. Nefsky, B. & Beach, D. Pub1 acts as an E6-AP-like protein ubiquitin ligase in the degradation of cdc25. EMBO J. 15, 1301–1312 (1996).
    Article CAS Google Scholar
  10. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).
    Article CAS Google Scholar
  11. Hein, C., Springael, J., Volland, C., Haguenauer-Tsapis, R. & Andre, B. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18, 77–87 (1995).
    Article CAS Google Scholar
  12. Nalefski, E. A. & Falke, J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 5, 2375–2390 (1996).
    Article CAS Google Scholar
  13. Plant, P. J., Yeger, H., Staub, O., Howard, P. & Rotin, D. The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J. Biol. Chem. 272, 32329–32336 (1997).
    Article CAS Google Scholar
  14. Rotin, D. WW (WWP) domains: from structure to function. Curr. Top. Microbiol. Immunol. 228, 115–133 (1998).
    CAS PubMed Google Scholar
  15. Fainsod, A., Steinbeisser, H. & De Robertis, E. M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 13, 5015–5025 (1994).
    Article CAS Google Scholar
  16. Hemmati-Brivanlou, A. & Thomsen, G. H. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17, 78–89 (1995).
    Article CAS Google Scholar
  17. Nishimatsu, S. & Thomsen, G. H. Ventral mesoderm induction and patterning by BMP heterodimers in Xenopus embryos. Mech. Dev. 74, 75–88 (1997).
    Article Google Scholar
  18. Thomsen, G. H. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 122, 2359–2366 (1996).
    CAS PubMed Google Scholar
  19. Fenteany, G.et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).
    Article ADS CAS Google Scholar
  20. Treier, M., Staszewski, L. M. & Bohmann, D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78, 787–798 (1994).
    Article CAS Google Scholar
  21. Macias-Silva, M., Hoodless, P. A., Tang, S. J., Buchwald, M. & Wrana, J. L. Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J. Biol. Chem. 273, 25628–25636 (1998).
    Article CAS Google Scholar
  22. Hoodless, P. A.et al. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev. Biol. 207, 364–379 (1999).
    Article CAS Google Scholar
  23. Hemmati-Brivanlou, A. & Melton, D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13–17 (1997).
    Article CAS Google Scholar
  24. Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184 (1997).
    CAS PubMed Google Scholar
  25. Suzuki, A., Chang, C., Yingling, J. M., Wang, X. F. & Hemmati-Brivanlou, A. Smad5 induces ventral fates in Xenopus embryos. Dev. Biol. 184, 402–405 (1997).
    Article CAS Google Scholar
  26. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massague, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383, 832–836 (1996).
    Article ADS CAS Google Scholar
  27. Candia, A. F.et al. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124, 4467–4480 (1997).
    CAS PubMed Google Scholar
  28. Eppert, K.et al. MADR2 maps to 18q21 and encodes a TGFβ regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543–552 (1996).
    Article CAS Google Scholar
  29. Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).
    Article CAS Google Scholar
  30. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North Holland, Amsterdam, 1967).
    Google Scholar

Download references