A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation (original) (raw)
References
Kingsley, D. M. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev.8, 133–146 (1994). ArticleCAS Google Scholar
Moses, H. L. & Serra, R. Regulation of differentiation by TGF-beta. Curr. Opin. Genet. Dev.6, 581–586 (1996). ArticleCAS Google Scholar
Harland, R. & Gerhart, J. Formation and Function of Spemann's organizer. Annu. Rev. Cell Biol.13, 611–667 (1997). ArticleCAS Google Scholar
Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem.67, 753–791 (1998). ArticleCAS Google Scholar
Whitman, M. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev.12, 2445–2462 (1998). ArticleCAS Google Scholar
Bartel, P. & Fields, S. Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol.254, 241–263 (1995). ArticleCAS Google Scholar
Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. Afamily of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA92, 2563–2567 (1995). [Published erratum appears in Proc. Natl Acad. Sci. USA92, 5249 (1995). ] Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998). ArticleCAS Google Scholar
Nefsky, B. & Beach, D. Pub1 acts as an E6-AP-like protein ubiquitin ligase in the degradation of cdc25. EMBO J.15, 1301–1312 (1996). ArticleCAS Google Scholar
Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell75, 495–505 (1993). ArticleCAS Google Scholar
Hein, C., Springael, J., Volland, C., Haguenauer-Tsapis, R. & Andre, B. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol.18, 77–87 (1995). ArticleCAS Google Scholar
Nalefski, E. A. & Falke, J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci.5, 2375–2390 (1996). ArticleCAS Google Scholar
Plant, P. J., Yeger, H., Staub, O., Howard, P. & Rotin, D. The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J. Biol. Chem.272, 32329–32336 (1997). ArticleCAS Google Scholar
Rotin, D. WW (WWP) domains: from structure to function. Curr. Top. Microbiol. Immunol.228, 115–133 (1998). CASPubMed Google Scholar
Fainsod, A., Steinbeisser, H. & De Robertis, E. M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J.13, 5015–5025 (1994). ArticleCAS Google Scholar
Hemmati-Brivanlou, A. & Thomsen, G. H. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev. Genet.17, 78–89 (1995). ArticleCAS Google Scholar
Nishimatsu, S. & Thomsen, G. H. Ventral mesoderm induction and patterning by BMP heterodimers in Xenopus embryos. Mech. Dev.74, 75–88 (1997). Article Google Scholar
Thomsen, G. H. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development122, 2359–2366 (1996). CASPubMed Google Scholar
Fenteany, G.et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science268, 726–731 (1995). ArticleADSCAS Google Scholar
Treier, M., Staszewski, L. M. & Bohmann, D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell78, 787–798 (1994). ArticleCAS Google Scholar
Macias-Silva, M., Hoodless, P. A., Tang, S. J., Buchwald, M. & Wrana, J. L. Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J. Biol. Chem.273, 25628–25636 (1998). ArticleCAS Google Scholar
Hoodless, P. A.et al. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev. Biol.207, 364–379 (1999). ArticleCAS Google Scholar
Hemmati-Brivanlou, A. & Melton, D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell88, 13–17 (1997). ArticleCAS Google Scholar
Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development124, 3177–3184 (1997). CASPubMed Google Scholar
Suzuki, A., Chang, C., Yingling, J. M., Wang, X. F. & Hemmati-Brivanlou, A. Smad5 induces ventral fates in Xenopus embryos. Dev. Biol.184, 402–405 (1997). ArticleCAS Google Scholar
Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massague, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature383, 832–836 (1996). ArticleADSCAS Google Scholar
Candia, A. F.et al. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development124, 4467–4480 (1997). CASPubMed Google Scholar
Eppert, K.et al. MADR2 maps to 18q21 and encodes a TGFβ regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell86, 543–552 (1996). ArticleCAS Google Scholar
Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell83, 121–127 (1995). ArticleCAS Google Scholar
Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North Holland, Amsterdam, 1967). Google Scholar