Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution (original) (raw)

References

  1. Alberts, B. et al. Molecular Biology of the Cell (Garland, New York, 1995).
    Google Scholar
  2. von Böhlen, K. et al. Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution. J. Mol. Biol. 222, 11–15 (1991).
    Article Google Scholar
  3. Trakhanov, S. D. et al. Crystallization of 70 S ribosomes and 30 S ribosomal subunits from Thermus thermophilus. FEBS Lett. 220, 319–322 (1987).
    Article Google Scholar
  4. Yusupov, M. M., Tischenko, S. V., Trakhanov, S. D., Ryazantsev, S. N. & Garber, M. B. Anew crystalline form of 30 S ribosomal subunits from Thermus thermophilus. FEBS Lett. 238, 113–115 (1988).
    Article Google Scholar
  5. Yonath, A. et al. Characterization of crystals of small ribosomal subunits. J. Mol. Biol. 203, 831–834 (1988).
    Article CAS Google Scholar
  6. Yonath, A. et al. Crystallographic studies on the ribosome, a large macromolecular assembly exhibiting severe nonisomorphism, extreme beam sensitivity and no internal symmetry. Acta Crystallogr. A 54, 945–955 (1998).
    Article CAS Google Scholar
  7. Lata, K. R. et al. Three-dimensional reconstruction of the Escherichia coli 30S ribosomal subunit in ice. J. Mol. Biol. 262, 43–52 (1996).
    Article CAS Google Scholar
  8. McCutcheon, J. P. et al. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl Acad. Sci. USA 96, 4301–4306 (1999).
    Article ADS CAS Google Scholar
  9. Mueller, F. & Brimacombe, R. Anew model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 Å. J. Mol. Biol. 271, 524–544 (1997).
    Article CAS Google Scholar
  10. Allain, F. H. & Varani, G. Structure of the P1 helix from group I self-splicing introns. J. Mol. Biol. 250, 333–353 (1995).
    Article CAS Google Scholar
  11. Ramakrishnan, V. & White, S. W. Structure of ribosomal protein S5 reveals sites of interaction with 16S RNA. Nature 358, 768–771 (1992).
    Article ADS CAS Google Scholar
  12. Lindahl, M. et al. Crystal structure of the ribosomal protein S6 from Thermus thermophilus. EMBO J. 13, 1249–1254 (1994).
    Article CAS Google Scholar
  13. Jaishree, T. N., Ramakrishnan, V. & White, S. W. Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy. Biochemistry 35, 2845–2853 (1996).
    Article CAS Google Scholar
  14. Davies, C., Ramakrishnan, V. & White, S. W. Structural evidence for specific S8–RNA and S8–protein interactions within the 30S ribosomal subunit; ribosomal protein S8 from Bacillus stearothermophilus at 1.9 Å resolution. Structure 4, 1093–1104 (1996).
    Article CAS Google Scholar
  15. Berglund, H. Rak, A. Serganov, A., Garber, M. & Härd, T. Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus. Nature Struct. Biol. 4, 20–23 (1997).
    Article CAS Google Scholar
  16. Winberly, B. T., White, S. W. & Ramakrishnan, V. The structure of ribosomal protein S7 at 1.9 Å resolution reveals a β-hairpin motif that binds double-stranded nucleic acids. Structure 5, 1187–1198 (1997).
    Article Google Scholar
  17. Hosaka, H. et al. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure 5, 1199–1208 (1997).
    Article CAS Google Scholar
  18. Clemons, W. M. J, Davies, C., White, S. W. & Ramakrishnan, V. Conformational variability of the N-terminal helix in the structure of ribosomal protein S15. Structure 6, 429–438 (1998).
    Article CAS Google Scholar
  19. Nevskaya, N. et al. Crystal structure of ribosomal protein S8 from Thermus thermophius reveals a high degree of structural conservation of a specific RNA binding site. J. Mol. Biol. 279, 233–244 (1998).
    Article CAS Google Scholar
  20. Davies, C., Gerstner, R. B., Draper, D. E., Ramakrishnan, V. & White, S. W. The crystal structure of ribosomal protein S4 reveals a two-domain molecule with an extensive RNA-binding surface: one domain shows structural homology to the ETS DNA-binding motif. EMBO J. 17, 4545–4558 (1998).
    Article CAS Google Scholar
  21. Markus, M. A., Gerstner, R. B., Draper, D. E. & Torchia, D. A. The solution structure of ribosomal protein S4 delta41 reveals two subdomains and a positively charged surface that may interact with RNA. EMBO J. 17, 4559–4571 (1998).
    Article CAS Google Scholar
  22. Capel, M. S. et al. Acomplete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238, 1403–1406 (1987).
    Article ADS CAS Google Scholar
  23. Powers, T. & Noller, H. F. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1, 194–209 (1995).
    CAS PubMed PubMed Central Google Scholar
  24. Mueller, F. & Brimacombe, R. Anew model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA–protein interaction data. J. Mol. Biol. 271, 545–565 (1997).
    Article CAS Google Scholar
  25. Ramakrishnan, V. et al. Position of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli. J. Mol. Biol. 153, 739–760 (1981).
    Article CAS Google Scholar
  26. Ungewickell, E., Garrett, R., Ehresmann, C., Stiegler, P. & Fellner, P. An investigation of the 16-S RNA binding sites of ribosomal proteins S4, S8, S15, and S20 from Escherichia coli. Eur. J. Biochem. 51, 165–180 (1975).
    Article CAS Google Scholar
  27. Mueller, F., Stark, H., van Heel, M., Rinke-Appel, J. & Brimacombe, R. Anew model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J. Mol. Biol. 271, 566–587 (1997).
    Article CAS Google Scholar
  28. Moazed, D. & Noller, H. F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J. Mol. Biol. 211, 135–145 (1990).
    Article CAS Google Scholar
  29. Lee, K., Varma, S., SantaLucia, J. J & Cunningham, P. R. In vivo determination of RNA structure–function relationships: analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269, 732–743 (1997).
    Article CAS Google Scholar
  30. Merryman, C., Moazed, D., McWhirter, J. & Noller, H. F. Nucleotides in 16S rRNA protected by the association of 30S and 50S ribosomal subunits. J. Mol. Biol. 285, 97–105 (1999).
    Article CAS Google Scholar
  31. Lodmell, J. S. & Dahlberg, A. E. Aconformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science 277, 1262–1267 (1997).
    Article CAS Google Scholar
  32. Gregory, R. J. et al. Interaction of ribosomal proteins S6, S8, S15 and S18 with the central domain of 16 S ribosomal RNA from Escherichia coli. J. Mol. Biol. 178, 287–302 (1984).
    Article CAS Google Scholar
  33. Greuer, B., Osswald, M., Brimacombe, R. & Stöffler, G. RNA-protein cross-linking in Escherichia coli 30S ribosomal subunits; determination of sites on 16S RNA that are cross-linked to proteins S3, S4, S7, S9, S10, S11, S17, S18 and S21 by treatment with bis-(2-chloroethyl)-methylamine. Nucleic Acids Res. 15, 3241–3255 (1987).
    Article CAS Google Scholar
  34. Wu, H., Jiang, L. & Zimmermann, R. A. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8–RNA interaction. Nucleic Acids Res. 22, 1687–1695 (1994).
    Article CAS Google Scholar
  35. Moine, H., Cachia, C., Westhof, E., Ehresmann, B. & Ehresmann, C. The RNA binding site of S8 ribosomal protein of Escherichia coli: Selex and hydroxyl radical probing studies. RNA 3, 255–268 (1997).
    CAS PubMed PubMed Central Google Scholar
  36. Batey, R. & Williamson, J. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16 S rRNA: I. Defining the minimal RNA site. J. Mol. Biol. 261, 536–549 (1996).
    Article CAS Google Scholar
  37. Serganov, A. A. et al. The 16S rRNA binding site of Thermus thermophilus ribosomal protein S15: comparison with Escherichia coli S15, minimum site and structure. RNA 2, 1124–1138 (1996).
    CAS PubMed PubMed Central Google Scholar
  38. Kalurachchi, K., Uma, K., Zimmermann, R. A. & Nikonowicz, E. P. Structural features of the binding site for ribosomal protein S8 in Escherichia coli 16S rRNA defined using NMR spectroscopy. Proc. Natl Acad. Sci. USA 94, 2139–2144 (1997).
    Article ADS CAS Google Scholar
  39. Urlaub, H., Thiede, B., Muller, E. C., Brimacombe, R. & Wittmann-Liebold, B. Identification and sequence analysis of contact sites between ribosomal proteins and rRNA in Escherichia coli 30 S subunits by a new approach using matrix-assisted laser desorption/ionization-mass spectrometry combined with N-terminal microsequencing. J. Biol. Chem. 272, 14547–14555 (1997).
    Article CAS Google Scholar
  40. Atmadja, J. et al. The tertiary folding of Escherichia coli 16S RNA, as studied by _in situ_intra-RNA cross-linking of 30S ribosomal subunits with bis-(2-chloroethyl)-methylamine. Nucleic Acids Res. 14, 659–673 (1986).
    Article CAS Google Scholar
  41. Agrawal, R. K., Penczek, P., Grassucci, R. A. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl Acad. Sci. USA 95, 6134–6138 (1998).
    Article ADS CAS Google Scholar
  42. van Acken, U. Proteinchemical studies on ribosomal proteins S4 and S12 from ram (ribosomal ambiguity) mutants of Escherichia coli. Mol. Gen. Genet. 140, 61–68 (1975).
    Article CAS Google Scholar
  43. Wittmann-Liebold, B. & Greuer, B. The primary structure of protein S5 from the small subunit of the Escherichia coli ribosome. FEBS Lett. 95, 91–98 (1978).
    Article CAS Google Scholar
  44. Allen, G., Capasso, R. & Gualerzi, C. Identification of the amino acid residues of proteins S5 and S8 adjacent to each other in the 30 S ribosomal subunit of Escherichia coli. J. Biol. Chem. 254, 9800–9806 (1979).
    CAS PubMed Google Scholar
  45. Agafonov, D. E., Kolb, V. A. & Spirin, A. S. Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique. Proc. Natl Acad. Sci. USA 94, 12892–12897 (1997).
    Article ADS CAS Google Scholar
  46. Otwinowski, Z. & Minor, W. in Methods in Enzymology (eds Carter, C. W. J. & Sweet, R. M.) 307–325 (Academic, New York, 1997).
    Google Scholar
  47. Terwilliger, T. & Berendzen, J. Automated MAD and MIR structure determination. Acta Crystallogr. D 55, 849–861 (1999).
    Article CAS Google Scholar
  48. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).
    Article CAS Google Scholar
  49. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277B, 173–207 (1997).
    Article Google Scholar
  50. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).
    Article Google Scholar

Download references