NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis (original) (raw)

References

  1. Arnone, M.I. & Davidson, E.H. The hardwiring of development—organization and function of genomic regulatory systems. Development 124, 1851–1864 (1997).
    CAS PubMed Google Scholar
  2. Gray, S. & Levine, M. Transcriptional repression in development . Curr. Opin. Cell. Biol. 8, 358– 364 (1996).
    Article CAS Google Scholar
  3. Mandel, G. & McKinnon, D. Molecular basis of neural-specific gene expression. Annu. Rev. Neurosci. 16, 323–345 (1993).
    Article CAS Google Scholar
  4. Schoenherr, C.J. & Anderson, D.J. Silencing is golden: negative regulation in the control of neuronal gene transcription . Curr. Opin. Neurobiol. 5, 566– 571 (1995).
    Article CAS Google Scholar
  5. Mori, N., Schoenherr, C., Vandenbergh, D.J. & Anderson, D.J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells . Neuron 9, 45–54 (1992).
    Article CAS Google Scholar
  6. Kraner, S.D., Chong, J.A., Tsay, H.J. & Mandel, G. Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9, 37–44 ( 1992).
    Article CAS Google Scholar
  7. Schoenherr, C.J., Paquette, A.J. & Anderson, D.J. Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl Acad. Sci. USA 93, 9881–9886 (1996).
    Article CAS Google Scholar
  8. Scholl, T., Stevens, M.B., Mahanta, S. & Strominger, J.L. A zinc finger protein that represses transcription of the human MHC class II gene, DPA. J. Immunol. 156, 1448– 1457 (1996).
    CAS PubMed Google Scholar
  9. Schoenherr, C.J. & Anderson, D.J. The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science 267, 1360– 1363 (1995).
    Article CAS Google Scholar
  10. Chong, J.A. et al. REST: A mammalian silencer protein that restricts sodium channel expression to neurons. Cell 80, 949– 957 (1995).
    Article CAS Google Scholar
  11. Wuenschell, C.W., Mori, N. & Anderson, D.J. Analysis of SCG10 gene expression in transgenic mice reveals that neural specificity is achieved through selective derepression . Neuron 4, 595–602 (1990).
    Article CAS Google Scholar
  12. Bessis, A., Champtiaux, N., Chatelin, L. & Changeux, J.-P. The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc. Natl Acad. Sci. USA 94, 5906– 5911 (1997).
    Article CAS Google Scholar
  13. Kallunki, P., Edelman, G.M. & Jones, F.S. Tissue-specific expression of the L1 cell adhesion molecular is modulated by the neural restrictive silencer element. J. Cell. Biol. 138, 1343–1354 (1997).
    Article CAS Google Scholar
  14. Kallunki, P., Jenkinson, S., Edelman, G.M. & Jones, F.S. Silencer elements modulate the expression of the gene for the neuron-glia cell-adhesion molecule, NG-CAM. J. Biol. Chem. 270, 21291–21298 (1995).
    Article CAS Google Scholar
  15. Li, L., Suzuki, T., Mori, N. & Greengard, P. Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl Acad. Sci. USA 90, 1460–1464 (1993).
    Article CAS Google Scholar
  16. Schoch, S., Cibelli, G. & Thiel, G. Neuron-specific gene expression of synapsin I: major role of a negative regulatory mechanism. J. Biol. Chem. 271, 3317–3323 (1996).
    Article CAS Google Scholar
  17. Moody, S.A., Quigg, M.S. & Frankfurter, A. Development of the peripheral trigeminal system in the chick revealed by an isotype-specific anti-ß-tubulin monoclonal antibody . J. Comp. Neurol. 279, 567– 580 (1989).
    Article CAS Google Scholar
  18. Molkentin, J.D. & Olson, E.N. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 6, 445–453 (1996).
    Article CAS Google Scholar
  19. Tapia-Ramirez, J., Eggen, B.J.L., Peral-Rubio, M.J., Toledo-Aral, J.J. & Mandel, G. A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc. Natl Acad. Sci. USA 94, 1177–1182 (1997).
    Article CAS Google Scholar
  20. Fekete, D.M. & Cepko, C.L. Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. 13, 2604–2613 (1993).
  21. Homburger, S.A. & Fekete, D.M. High efficiency gene transfer into the embryonic chicken CNS using B-subgroup retroviruses . Dev. Dyn. 206, 112–120 (1996).
    Article CAS Google Scholar
  22. Petropoulos, C.J. & Hughes, S.H. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J. Virol. 65, 3728– 3737 (1991).
    CAS PubMed PubMed Central Google Scholar
  23. Bader, D., Masaki, T. & Fischmann, D.A. Immuno-chemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell. Biol. 95, 763–770 ( 1982).
    Article CAS Google Scholar
  24. Kallunki, P., Edelman, G.M. & Jones, F.S. The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc. Natl Acad. Sci. USA in press.
  25. Palm, K., Belluardo, N., Metsis, M. & Timmusk, T. Neuronal expression of zinc-finger transcription factor REST/NRSF/XBR gene . J. Neurosci. 18, 1280– 1296 (1998).
    Article CAS Google Scholar
  26. Vandenbergh, D.J., Wuenschell, C.W., Mori, N. & Anderson, D.J. Chromatin structure as a molecular marker of cell lineage and developmental potential in neural crest-derived chromaffin cells. Neuron 3, 507–518 (1989).
    Article CAS Google Scholar
  27. Kohler, J., Schafer-Preuss, S. & Buttgereit, D. Related enhancers in the intron of the beta1 tubulin gene of Drosophila melanogaster are essential for maternal and CNS-specific expression during embryogenesis. Nucleic Acids Res. 24, 2543–2550 (1996).
    Article CAS Google Scholar
  28. Robertson, E.J. Embryo-derived stem cell lines. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 71– 112 (IRL Press, Oxford, 1987).
    Google Scholar
  29. Hunter, E. Biological techniques for avian sarcoma viruses. Methods Enzymol. 58, 379–393 ( 1979).
    Article CAS Google Scholar
  30. Morgan, B.A. & Fekete, D.M. Manipulating gene expression with replication-competent retroviruses. in Methods in Avian Embryology (ed. Bronner-Fraser, M.E.) 185–218 (Academic Press, San Diego, 1996).
    Chapter Google Scholar
  31. Hamburger, V. & Hamilton, H.L. A series of normal stages in the development of the chick embryo. Dev. Dyn. 195, PPL>272 (1992).
  32. Kaufman, M.H. Histological procedures for mammalian embryos. in Postimplantation Mammalian Embryos, A Practical Approach (eds Copp, A.J. & Cockroft, D.L.) 81–91 (IRL Press, Oxford, UK, 1990).
    Google Scholar
  33. Ma, Q., Chen, Z.F., Barrantes, I.B., de la Pompa, J.L. & Anderson, D.J. Neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469– 482 (1998).
    Article CAS Google Scholar
  34. Birren, S.J., Lo, L.C. & Anderson, D.J. Sympathetic neurons undergo a developmental switch in trophic dependence. Development 119, 597–610 (1993).
    CAS PubMed Google Scholar
  35. Myat, A., Henrique, D., Ish-Horowicz, D. & Lewis, J. A chick homologue of Serrate, and its relationship with Notch and Delta homologues during central neurogenesis. Dev. Biol. 174, 233–247 ( 1996).
    Article CAS Google Scholar
  36. Strahle, U., Blader, P., Adam, J. & Ingham, P. A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material . Trends Genet. 10, 75– 76 (1994).
    Article CAS Google Scholar

Download references