Crystal structure of the ATP-binding subunit of an ABC transporter (original) (raw)

References

  1. Doige, C. A. & Ames, G. F.-L. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu. Rev. Microbiol. 47, 291–319 (1993).
    Article CAS Google Scholar
  2. Blattner, F. R.et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).
    Article CAS Google Scholar
  3. Nikaido, K., Liu, P.-Q. & Ames, G. F.-L. Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubilization, dimerization, and ATPase activity. J. Biol. Chem. 272, 27745–27752 (1997).
    Article CAS Google Scholar
  4. Liu, C. E. & Ames, G. F.-L. Characterization of transport through the periplasmic histidine permease using proteoliposomes reconstituted by dialysis. J. Biol. Chem. 272, 859–866 (1997).
    Article CAS Google Scholar
  5. Liu, C. E., Liu, P.-Q. & Ames, G. F.-L. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J. Biol. Chem. 272, 21883–21891 (1997).
    Article CAS Google Scholar
  6. Baichwal, V., Liu, D. & Ames, G. F.-L. The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface. Proc. Natl Acad. Sci. USA 90, 620–624 (1993).
    Article ADS CAS Google Scholar
  7. Petronilli, V. & Ames, G. F.-L. Binding protein-independent histidine permease mutants: uncoupling of ATP hydrolysis from transmembrane signaling. J. Biol. Chem. 266, 16293–16296 (1991).
    CAS PubMed Google Scholar
  8. Liu, P.-Q. & Ames, G. F.-L. In vitro disassembly and reassembly of an ABC transporter, the histidine permease. Proc. Natl Acad. Sci. USA 95, 3495–3500 (1998).
    Article ADS CAS Google Scholar
  9. Kerppola, R. E., Shyamala, V., Klebba, P. & Ames, G. F.-L. The membrane-bound proteins of periplasmic permeases form a complex: identification of the histidine permease HisQMP complex. J. Biol. Chem. 266, 9857–9865 (1991).
    CAS PubMed Google Scholar
  10. Story, R. M. & Steitz, T. A. Structure of the recA protein-ADP complex. Nature 355, 318–324 (1992).
    Article ADS CAS Google Scholar
  11. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).
    Article ADS CAS Google Scholar
  12. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop — a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).
    Article Google Scholar
  13. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).
    Article CAS Google Scholar
  14. Pai, E. F.et al. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214 (1989).
    Article ADS CAS Google Scholar
  15. Kim, S.-H., Prive, G. G. & Milburn, M. V. in Handbook of Experimental Pharmacology. GTPases in Biology (eds Dickey, B. F. & Birnbaumer, L.) 177–194 (Springer, Berlin, 1993).
    Google Scholar
  16. Pai, E. F.et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).
    Article CAS Google Scholar
  17. Shyamala, V., Baichwal, V., Beall, E. & Ames, G. F.-L. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations. J. Biol. Chem. 266, 18714–18719 (1991).
    CAS PubMed Google Scholar
  18. Mimura, C. S., Admon, A., Hurt, K. A. & Ames, G. F.-L. The nucleotide-binding site of HisP, a membrane protein of the histidine permease. Identification of amino acid residues photoaffinity-labeled by 8-azido ATP. J. Biol. Chem. 265, 19535–19542 (1990).
    CAS PubMed Google Scholar
  19. Ames, G. F.-L., Mimura, C., Holbrook, S. & Shyamala, V. Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. Adv. Enzymol. 65, 1–47 (1992).
    CAS PubMed Google Scholar
  20. Bianchet, M. A., Ko, Y. H., Amzel, L. M. & Pedersen, P. L. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Bionerg. Biomemb. 29, 503–524 (1997).
    Article CAS Google Scholar
  21. Cheng, S. H.et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834 (1990).
    Article CAS Google Scholar
  22. Otwinowski, Z. in Data Collection and Processing (eds Saway, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).
    Google Scholar
  23. Terwilliger, T. C., Kim, S.-H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A 43, 1–5 (1987).
    Article Google Scholar
  24. Cowtan, K. D. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D 49, 148–157 (1993).
    Article CAS Google Scholar
  25. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  26. Brünger, A. T.et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1993).
    Article Google Scholar
  27. Adams, P. D., Pannu, N. S., Read, R. J. & Brunger, A. T. Cross-validated maximum likelihood enhance crystallograhic simulated annealing refinement. Proc. Natl Acad. Sci. USA 94, 5018–5023 (1997).
    Article ADS CAS Google Scholar
  28. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thronton, J. M. Procheck — a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
    Article CAS Google Scholar
  29. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).
    Article Google Scholar
  30. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).
    Article CAS Google Scholar

Download references