RNA polymerase II is an essential mRNA polyadenylation factor (original) (raw)

References

  1. Wahle, E. & Keller, W. The biochemistry of polyadenylation. Trends Biochem. Sci. 21, 247–250 (1996).
    Article CAS Google Scholar
  2. Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766 (1997).
    Article CAS Google Scholar
  3. Niwa, M., Rose, S. D. & Berget, S. M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4, 1552–1559 (1990).
    Article CAS Google Scholar
  4. Gunderson, S. I. et al. The human U1A snRMP protein regulates polyadenylation via direct interaction with poly(A) polymerase. Cell 76, 531–541 (1994).
    Article CAS Google Scholar
  5. Lutz, C. S. et al. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage–polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 10, 325–337 (1996).
    Article CAS Google Scholar
  6. Yuryev, A. et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl Acad. USA 93, 6975–6980 (1996).
    Article ADS CAS Google Scholar
  7. Mortillaro, M. J. et al. Ahyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl Acad. USA 93, 8253–8257 (1996).
    Article ADS CAS Google Scholar
  8. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).
    Article ADS CAS Google Scholar
  9. Dantonel, J. C., Murthy, K. G. K., Manley, J. L. & Tora, L. CPSF links transcription and mRNA 3′ end formation. Nature 389, 399–402 (1997).
    Article ADS CAS Google Scholar
  10. Hirose, Y. & Manley, J. L. Creatine phosphate, not ATP, is required for 3′ end cleavage of mammalian pre-mRNA in vitro. J. Biol. Chem. 272, 29636–29642 (1997).
    Article CAS Google Scholar
  11. Matthews, H. R. Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol. Ther. 67, 323–350 (1995).
    Article CAS Google Scholar
  12. Takagaki, Y., Ryner, L. C. & Manley, J. L. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev. 3, 1711–1724 (1989).
    Article CAS Google Scholar
  13. Takagaki, Y., Ryner, L. C. & Manley, J. L. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 52, 731–742 (1988).
    Article CAS Google Scholar
  14. Christofori, G. & Keller, W. 3′ cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell 54, 875–889 (1988).
    Article CAS Google Scholar
  15. Colgan, D. F., Murthy, K. G. K., Prives, C. & Manley, J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384, 282–285 (1996).
    Article ADS CAS Google Scholar
  16. Colgan, D. F., Murthy, K. G. K., Zhao, W., Prives, C. & Manley, J. L. Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J. 17, 1053–1062 (1998).
    Article CAS Google Scholar
  17. Manley, J. L. & Tacke, R. SR proteins and splicing control. Genes Dev. 10, 1569–1579 (1996).
    Article CAS Google Scholar
  18. Lou, H., Gagel, R. F. & Berget, S. M. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 10, 208–219 (1996).
    Article CAS Google Scholar
  19. Dahmus, M. E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271, 19009–19012 (1996).
    Article CAS Google Scholar
  20. Lu, H., Flores, O., Weinmann, R. & Reinberg, D. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl Acad. USA 88, 10004–10008 (1991).
    Article ADS CAS Google Scholar
  21. Besse, S., Vigneron, M., Pichard, E. & Puvion-Dutilleul, F. Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granulates. Gene Expr. 4, 143–161 (1995).
    CAS PubMed Google Scholar
  22. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).
    Article CAS Google Scholar
  23. Takagaki, Y., Manley, J. L., MacDonald, C. C., Wilusz, J. & Shenk, T. Amultisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4, 2112–2120 (1990).
    Article CAS Google Scholar
  24. Reinberg, D. & Roeder, R. G. Factors involved in specific transcription by mammalian RNA polymerase II. J. Biol. Chem. 262, 3310–3321 (1987).
    CAS PubMed Google Scholar
  25. Zahler, A. M., Lane, W. S., Stolk, J. A. & Roth, M. B. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837–847 (1992).
    Article CAS Google Scholar
  26. Peterson, S. R., Dvir, A., Anderson, C. W. & Dynan, W. S. DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats. Genes Dev. 6, 426–438 (1992).
    Article CAS Google Scholar
  27. Flaherty, S. M., Fortes, P., Izaurralde, E., Mattaj, I. W. & Gilmartin, G. M. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc. Natl Acad. USA 94, 11893–11898 (1997).
    Article ADS CAS Google Scholar
  28. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1988)).
    Google Scholar

Download references