RNA polymerase II is an essential mRNA polyadenylation factor (original) (raw)
References
Wahle, E. & Keller, W. The biochemistry of polyadenylation. Trends Biochem. Sci.21, 247–250 (1996). ArticleCAS Google Scholar
Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev.11, 2755–2766 (1997). ArticleCAS Google Scholar
Niwa, M., Rose, S. D. & Berget, S. M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev.4, 1552–1559 (1990). ArticleCAS Google Scholar
Gunderson, S. I. et al. The human U1A snRMP protein regulates polyadenylation via direct interaction with poly(A) polymerase. Cell76, 531–541 (1994). ArticleCAS Google Scholar
Lutz, C. S. et al. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage–polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev.10, 325–337 (1996). ArticleCAS Google Scholar
Yuryev, A. et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl Acad. USA93, 6975–6980 (1996). ArticleADSCAS Google Scholar
Mortillaro, M. J. et al. Ahyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl Acad. USA93, 8253–8257 (1996). ArticleADSCAS Google Scholar
McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature385, 357–361 (1997). ArticleADSCAS Google Scholar
Dantonel, J. C., Murthy, K. G. K., Manley, J. L. & Tora, L. CPSF links transcription and mRNA 3′ end formation. Nature389, 399–402 (1997). ArticleADSCAS Google Scholar
Hirose, Y. & Manley, J. L. Creatine phosphate, not ATP, is required for 3′ end cleavage of mammalian pre-mRNA in vitro. J. Biol. Chem.272, 29636–29642 (1997). ArticleCAS Google Scholar
Matthews, H. R. Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol. Ther.67, 323–350 (1995). ArticleCAS Google Scholar
Takagaki, Y., Ryner, L. C. & Manley, J. L. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev.3, 1711–1724 (1989). ArticleCAS Google Scholar
Takagaki, Y., Ryner, L. C. & Manley, J. L. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell52, 731–742 (1988). ArticleCAS Google Scholar
Christofori, G. & Keller, W. 3′ cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell54, 875–889 (1988). ArticleCAS Google Scholar
Colgan, D. F., Murthy, K. G. K., Prives, C. & Manley, J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature384, 282–285 (1996). ArticleADSCAS Google Scholar
Colgan, D. F., Murthy, K. G. K., Zhao, W., Prives, C. & Manley, J. L. Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J.17, 1053–1062 (1998). ArticleCAS Google Scholar
Manley, J. L. & Tacke, R. SR proteins and splicing control. Genes Dev.10, 1569–1579 (1996). ArticleCAS Google Scholar
Lou, H., Gagel, R. F. & Berget, S. M. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev.10, 208–219 (1996). ArticleCAS Google Scholar
Dahmus, M. E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem.271, 19009–19012 (1996). ArticleCAS Google Scholar
Lu, H., Flores, O., Weinmann, R. & Reinberg, D. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl Acad. USA88, 10004–10008 (1991). ArticleADSCAS Google Scholar
Besse, S., Vigneron, M., Pichard, E. & Puvion-Dutilleul, F. Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granulates. Gene Expr.4, 143–161 (1995). CASPubMed Google Scholar
Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res.11, 1475–1489 (1983). ArticleCAS Google Scholar
Takagaki, Y., Manley, J. L., MacDonald, C. C., Wilusz, J. & Shenk, T. Amultisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev.4, 2112–2120 (1990). ArticleCAS Google Scholar
Reinberg, D. & Roeder, R. G. Factors involved in specific transcription by mammalian RNA polymerase II. J. Biol. Chem.262, 3310–3321 (1987). CASPubMed Google Scholar
Zahler, A. M., Lane, W. S., Stolk, J. A. & Roth, M. B. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev.6, 837–847 (1992). ArticleCAS Google Scholar
Peterson, S. R., Dvir, A., Anderson, C. W. & Dynan, W. S. DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats. Genes Dev.6, 426–438 (1992). ArticleCAS Google Scholar
Flaherty, S. M., Fortes, P., Izaurralde, E., Mattaj, I. W. & Gilmartin, G. M. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc. Natl Acad. USA94, 11893–11898 (1997). ArticleADSCAS Google Scholar
Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1988)). Google Scholar