Zebrafish organizer development and germ-layer formation require nodal-related signals (original) (raw)

References

  1. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13, 611–667 (1997).
    Article CAS Google Scholar
  2. Schier, A. F. & Talbot, W. S. The zebrafish organizer. Curr. Opin. Genet. Dev. 8, 464–471 (1998).
    Article CAS Google Scholar
  3. Heisenberg, C. P. & Nüsslein-Volhard, C. The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev. Biol. 184, 85–94 (1997).
    Article CAS Google Scholar
  4. Hatta, K., Kimmel, C. B., Ho, R. K. & Walker, C. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341 (1991).
    Article ADS CAS Google Scholar
  5. Sampath, K.et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature(in the press).
  6. Rebagliati, M. R., Toyama, R., Haffter, P. & Dawid, I. B. Cyclops encodes a nodal-related factor involved in midline signalling. Proc. Natl Acad. Sci. USA 95, 9932–9937 (1998).
    Article ADS CAS Google Scholar
  7. Mizuno, T., Yamaha, E., Wakahara, M., Kuroiwa, A. & Takeda, H. Mesoderm induction in zebrafish. Nature 383, 131–132 (1996).
    Article ADS CAS Google Scholar
  8. Thisse, C., Thisse, B., Halpern, M. E. & Postlethwait, J. H. goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev. Biol. 164, 420–429 (1994).
    Article CAS Google Scholar
  9. Stachel, S. E., Grunwald, D. J. & Myers, P. Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117, 1261–1274 (1993).
    CAS Google Scholar
  10. Schulte-Merker, S., Ho, R. K., Herrmann, B. G. & Nüsslein-Volhard, C. The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021–1032 (1992).
    CAS Google Scholar
  11. Strähle, U., Blader, P., Henrique, D. & Ingham, P. W. Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev. 7, 1436–1446 (1993).
    Article Google Scholar
  12. Schier, A. F., Neuhauss, S. C. F., Helde, K. A., Talbot, W. S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327–342 (1997).
    CAS Google Scholar
  13. Thisse, C., Thisse, B., Schilling, T. F. & Postlethwait, J. H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215 (1993).
    CAS Google Scholar
  14. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).
    Article CAS Google Scholar
  15. Krauss, S., Johansen, T., Korzh, V. & Fjose, A. Expression of the zebrafish paired box gene pax [ zf-b ] during early neurogenesis. Development 113, 1193–1206 (1991).
    CAS Google Scholar
  16. Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P. & Dawid, I. B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol. 199, 261–272 (1998).
    Article CAS Google Scholar
  17. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. & Kuehn, M. R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).
    Article ADS CAS Google Scholar
  18. Jones, C. M., Kuehn, M. R., Hogan, B. M. L., Smith, J. C. & Wright, C. V. E. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121, 3651–3662 (1995).
    CAS Google Scholar
  19. Toyama, R., O'Connell, M. L., Wright, C. V. E., Kuehn, M. R. & Dawid, I. B. Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 121, 383–391 (1995).
    CAS Google Scholar
  20. Conlon, F. L.et al. Aprimary requirement for nodal in the formation and maintenance of the primitive steak in the mouse. Development 120, 1919–1928 (1994).
    CAS Google Scholar
  21. Matzuk, M. M.et al. Functional analysis of activins during mammalian development. Nature 374, 354–356 (1995).
    Article ADS CAS Google Scholar
  22. Kanki, J. P. & Ho, R. K. The development of the posterior body in zebrafish. Development 124, 881–893 (1997).
    CAS Google Scholar
  23. Schneider, S., Steinbeisser, H., Warga, R. M. & Hausen, P. β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57, 191–198 (1996).
    Article CAS Google Scholar
  24. Talbot, W. S.et al. Genetic analysis of chromosomal rearrangements in the cyclops region of the zebrafish genome. Genetics 148, 373–380 (1998).
    CAS Google Scholar
  25. Schier, A. F.et al. Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165–178 (1996).
    CAS Google Scholar
  26. Postlethwait, J. H.et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345–349 (1998).
    Article CAS Google Scholar
  27. Knapik, E. W.et al. Amicrosatellite genetic linkage map for zebrafish (Danio rerio). Nature Genet. 18, 338–343 (1998).
    Article CAS Google Scholar
  28. Smith, W. C., McKendry, R., Ribisi, S. & Harland, R. M. Anodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82, 37–46 (1995).
    Article CAS Google Scholar
  29. Joseph, E. M. & Melton, D. A. Xnr4 : a Xenopus nodal -related gene expressed in the Spemann organizer. Dev. Biol. 184, 367–372 (1997).
    Article CAS Google Scholar

Download references