Zebrafish organizer development and germ-layer formation require nodal-related signals (original) (raw)
References
Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol.13, 611–667 (1997). ArticleCAS Google Scholar
Schier, A. F. & Talbot, W. S. The zebrafish organizer. Curr. Opin. Genet. Dev.8, 464–471 (1998). ArticleCAS Google Scholar
Heisenberg, C. P. & Nüsslein-Volhard, C. The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev. Biol.184, 85–94 (1997). ArticleCAS Google Scholar
Hatta, K., Kimmel, C. B., Ho, R. K. & Walker, C. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature350, 339–341 (1991). ArticleADSCAS Google Scholar
Sampath, K.et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature(in the press).
Rebagliati, M. R., Toyama, R., Haffter, P. & Dawid, I. B. Cyclops encodes a nodal-related factor involved in midline signalling. Proc. Natl Acad. Sci. USA95, 9932–9937 (1998). ArticleADSCAS Google Scholar
Mizuno, T., Yamaha, E., Wakahara, M., Kuroiwa, A. & Takeda, H. Mesoderm induction in zebrafish. Nature383, 131–132 (1996). ArticleADSCAS Google Scholar
Thisse, C., Thisse, B., Halpern, M. E. & Postlethwait, J. H. goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev. Biol.164, 420–429 (1994). ArticleCAS Google Scholar
Stachel, S. E., Grunwald, D. J. & Myers, P. Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development117, 1261–1274 (1993). CAS Google Scholar
Schulte-Merker, S., Ho, R. K., Herrmann, B. G. & Nüsslein-Volhard, C. The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development116, 1021–1032 (1992). CAS Google Scholar
Strähle, U., Blader, P., Henrique, D. & Ingham, P. W. Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev.7, 1436–1446 (1993). Article Google Scholar
Schier, A. F., Neuhauss, S. C. F., Helde, K. A., Talbot, W. S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development124, 327–342 (1997). CAS Google Scholar
Thisse, C., Thisse, B., Schilling, T. F. & Postlethwait, J. H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development119, 1203–1215 (1993). CAS Google Scholar
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn.203, 253–310 (1995). ArticleCAS Google Scholar
Krauss, S., Johansen, T., Korzh, V. & Fjose, A. Expression of the zebrafish paired box gene pax [ zf-b ] during early neurogenesis. Development113, 1193–1206 (1991). CAS Google Scholar
Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P. & Dawid, I. B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol.199, 261–272 (1998). ArticleCAS Google Scholar
Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. & Kuehn, M. R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature361, 543–547 (1993). ArticleADSCAS Google Scholar
Jones, C. M., Kuehn, M. R., Hogan, B. M. L., Smith, J. C. & Wright, C. V. E. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development121, 3651–3662 (1995). CAS Google Scholar
Toyama, R., O'Connell, M. L., Wright, C. V. E., Kuehn, M. R. & Dawid, I. B. Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development121, 383–391 (1995). CAS Google Scholar
Conlon, F. L.et al. Aprimary requirement for nodal in the formation and maintenance of the primitive steak in the mouse. Development120, 1919–1928 (1994). CAS Google Scholar
Matzuk, M. M.et al. Functional analysis of activins during mammalian development. Nature374, 354–356 (1995). ArticleADSCAS Google Scholar
Kanki, J. P. & Ho, R. K. The development of the posterior body in zebrafish. Development124, 881–893 (1997). CAS Google Scholar
Schneider, S., Steinbeisser, H., Warga, R. M. & Hausen, P. β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev.57, 191–198 (1996). ArticleCAS Google Scholar
Talbot, W. S.et al. Genetic analysis of chromosomal rearrangements in the cyclops region of the zebrafish genome. Genetics148, 373–380 (1998). CAS Google Scholar
Schier, A. F.et al. Mutations affecting the development of the embryonic zebrafish brain. Development123, 165–178 (1996). CAS Google Scholar
Postlethwait, J. H.et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet.18, 345–349 (1998). ArticleCAS Google Scholar
Knapik, E. W.et al. Amicrosatellite genetic linkage map for zebrafish (Danio rerio). Nature Genet.18, 338–343 (1998). ArticleCAS Google Scholar
Smith, W. C., McKendry, R., Ribisi, S. & Harland, R. M. Anodal-related gene defines a physical and functional domain within the Spemann organizer. Cell82, 37–46 (1995). ArticleCAS Google Scholar
Joseph, E. M. & Melton, D. A. Xnr4 : a Xenopus nodal -related gene expressed in the Spemann organizer. Dev. Biol.184, 367–372 (1997). ArticleCAS Google Scholar