3′ Terminal sequences of 16S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes (original) (raw)

Nature volume 267, pages 462–465 (1977)Cite this article

Abstract

DIRECT Watson–Crick base pairing between the 3′ terminus of 16S RNA and messenger RNA seems to contribute to the recognition and binding of protein synthesis initiator regions by Escherichia coli_1,2. Since bacterial species differ in the pyrimidine-rich sequences at the 3′ termini of their 16S RNAs, it has been suggested that this mRNA–rRNA interaction can account for observed differences in translational specificity among prokaryotes3. To test this hypothesis, we have asked whether it explains the choice of sites bound by Bacillus stearothermophilus ribosomes in two mRNAs—the R17 and Q_β phage genomes. The RNA sequence data presented here lead to two conclusions. First, B. stearothermophilus ribosome recognition of two non-initiator Q_β_ regions at high temperature4 is indeed correlated with an extensive mRNA–rRNA match. Second, surprisingly, the 3′ terminal sequence of 16S rRNA from B. stearothermophilus is identical to that of _E. coli_1,5–7 except that the 3′ terminal adenosine of E. coli rRNA is replaced by UCUAOH in the thermophile. Thus, rRNA sequences at the 3′ end of 16S rRNA cannot explain differences in the capacity of ribosomes from these two species to recognise RNA phage initiator regions at lower temperatures4,8,9.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Shine, J. & Dalgarno, L. Proc. natn. Acad. Sci. U.S.A. 71, 1342–1346 (1974).
    Article ADS CAS Google Scholar
  2. Steitz, J. A. & Jakes, K. Proc. natn. Acad. Sci. U.S.A. 72, 4734–4738 (1975).
    Article ADS CAS Google Scholar
  3. Shine, J. & Dalgarno, L. Nature 254, 34–38 (1975).
    Article ADS CAS Google Scholar
  4. Steitz, J. A. J. molec. Biol. 73, 1–16 (1973).
    Article CAS Google Scholar
  5. Noller, H. F. & Herr, W. Molec. Biol. Rep. 1, 437–439 (1974).
    Article CAS Google Scholar
  6. Ehresmann, C., Stiegler, P. & Ebel, J. P. FEBS Lett. 49, 47–48 (1974).
    Article CAS Google Scholar
  7. Sprague, K. U. & Steitz, J. A. Nucleic Acids Res. 2, 787–798 (1975).
    Article CAS Google Scholar
  8. Lodish, H. F. Nature 225, 867–870 (1969).
    Article ADS Google Scholar
  9. Lodish, H. F. Nature 224, 705–707 (1970).
    Article ADS Google Scholar
  10. Steitz, J. A. Nature 224, 957–964 (1969).
    Article ADS CAS Google Scholar
  11. Goldberg, M. L. & Steitz, J. A. Biochemistry 13, 2123–2129 (1974).
    Article CAS Google Scholar
  12. Steitz, J. A. Proc. natn. Acad. Sci. U.S.A. 70, 2605–2609 (1973).
    Article ADS CAS Google Scholar
  13. Staples, D. H., Hindley, J., Billeter, M. A. & Weissman, C. Nature new Biol. 234, 202–204 (1971).
    Article CAS Google Scholar
  14. Staples, D. H. & Hindley, J. Nature new Biol. 234, 211–212 (1971).
    Article CAS Google Scholar
  15. Lodish, H. F. J. molec. Biol. 50, 689–702 (1970).
    Article CAS Google Scholar
  16. Lodish, H. F. J. molec. Biol. 56, 627–632 (1971).
    Article CAS Google Scholar
  17. Woese, C., Sogin, M., Stahl, D., Lewis, B. J. & Bowen, L. J. molec. Evol. 7, 197–213 (1976).
    Article ADS CAS Google Scholar
  18. Shine, J. & Dalgarno, L. Eur. J. Biochem. 57, 221–230 (1975).
    Article CAS Google Scholar
  19. Rosenberg, M. Nucleic Acids Res. 1, 653–671 (1974).
    Article CAS Google Scholar
  20. Barrell, B. G. Procedures Nucleic Acids Res. 2, 751–779 (1971).
    CAS Google Scholar
  21. Steitz, J. A. & Steege, D. A. J. molec. Biol. (in the press).
  22. Held, W. A., Gette, W. R. & Nomura, M. Biochemistry 13, 2115–2122 (1974).
    Article CAS Google Scholar
  23. Steitz, J. A., Wahba, A. J., Laughrea, M. & Moore, P. B. Nucleic Acids Res. 4, 1–15 (1977).
    Article CAS Google Scholar
  24. Isono, K. & Isono, S. Proc. natn. Acad. Sci. U.S.A. 73, 767–770 (1976).
    Article ADS CAS Google Scholar
  25. Isono, S. & Isono, K. Eur. J. Biochem. 56, 15–22 (1975).
    Article CAS Google Scholar
  26. Gralla, J. & Crothers, D. M. J. molec. Biol. 73, 497–511 (1973).
    Article CAS Google Scholar
  27. Steitz, J. A. Nature new Biol. 236, 71–75 (1972).
    Article ADS CAS Google Scholar
  28. Hindley, J. & Staples, D. H. Nature 224, 964–967 (1969).
    Article ADS CAS Google Scholar
  29. Flessel, C. P., Ralph, P. & Rich, A. Science 158, 658–660 (1967).
    Article ADS CAS Google Scholar
  30. Griffin, B. E. FEBS Lett. 15, 165–168 (1971).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06510
    K. U. SPRAGUE, J. A. STEITZ, R. M. GRENLEY & C. E. STOCKING

Authors

  1. K. U. SPRAGUE
    You can also search for this author inPubMed Google Scholar
  2. J. A. STEITZ
    You can also search for this author inPubMed Google Scholar
  3. R. M. GRENLEY
    You can also search for this author inPubMed Google Scholar
  4. C. E. STOCKING
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

SPRAGUE, K., STEITZ, J., GRENLEY, R. et al. 3′ Terminal sequences of 16S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes.Nature 267, 462–465 (1977). https://doi.org/10.1038/267462a0

Download citation