Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1 (original) (raw)

References

  1. Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).
    Article ADS CAS Google Scholar
  2. Enoch, T. & Nurse, P. Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60, 665–673 (1990).
    Article CAS Google Scholar
  3. Jin, P., Gu, Y. & Morgan, D. O. Role of inhibitory Cdc2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134, 963–970 (1996).
    Article CAS Google Scholar
  4. O'Connell, M. J., Raleigh, J. M., Verkade, H. M. & Nurse, P. Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 16, 545–554 (1997).
    Article CAS Google Scholar
  5. Rhind, N., Furnari, B. & Russell, P. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11, 504–511 (1997).
    Article CAS Google Scholar
  6. Walworth, N., Davey, S. & Beach, D. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363, 368–371 (1993).
    Article ADS CAS Google Scholar
  7. Walworth, N. C. & Bernards, R. rad-dependent responses of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356 (1996).
    Article ADS CAS Google Scholar
  8. Peng, C.-Y. et al. Mitotic- and G2-checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine 216. Science 277, 1501–1505 (1997).
    Article CAS Google Scholar
  9. Furnari, B., Rhind, N. & Russell, P. Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).
    Article CAS Google Scholar
  10. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation via Cdc25. Science 277, 1497–1501 (1997).
    Article CAS Google Scholar
  11. Al-Khodairy, F. et al. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol. Biol. Cell 5, 147–160 (1994).
    Article CAS Google Scholar
  12. Murakami, H. & Okayama, H. Akinase from fission yeast responsible for blocking mitosis in S phase. Nature 374, 817–819 (1995).
    Article ADS CAS Google Scholar
  13. Francesconi, S., Grenon, M., Bouvier, D. & Baldacci, G. p56chk1 protein kinase is required for the DNA replication checkpoint at 37 °C in fission yeast. EMBO J. 16, 1332–1341 (1997).
    Article CAS Google Scholar
  14. Uchiyama, M., Galli, I., Griffiths, D. J. F. & Wang, T. S.-F. Anovel mutant allele of Schizosaccharomyces pombe rad26 defective in monitoring S-phase progression to prevent premature mitosis. Mol. Cell. Biol. 17, 3103–3115 (1997).
    Article CAS Google Scholar
  15. Sibon, O. C. M., Stevenson, V. A. & Theurkauf, W. E. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388, 93–97 (1997).
    Article ADS CAS Google Scholar
  16. Lindsay, H. D. et al. Sphase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998).
    Article CAS Google Scholar
  17. Boddy, M. N., Furnari, B., Mondesert, O. & Russell, P. Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280, 909–912 (1998).
    Article ADS CAS Google Scholar
  18. Enoch, T., Carr, A. M. & Nurse, P. Fission yeast genes involved in coupling motisis to completion of DNA replication. Genes Dev. 6, 2035–2046 (1992).
    Article CAS Google Scholar
  19. Muslin, A. J., Tanner, J. W., Allen, P. M. & Shaw, A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 (1996).
    Article CAS Google Scholar
  20. Yaffe, M. B. et al. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91, 961–971 (1997).
    Article CAS Google Scholar
  21. Forbes, K. C., Humphrey, T. & Enoch, T. Suppressors of Cdc25p overexpression identify two pathways that influence the G2/M checkpoint in fission yeast. Genetics (in the press).
  22. Basi, G., Schmid, E. & Maundrell, K. TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or the thiamine repressibility. Gene 123, 131–136 (1993).
    Article CAS Google Scholar
  23. Ogg, S., Gabrielli, B. & Piwnica-Worms, H. Purification of a serine inase that associates with and phosphorylates human Cdc25C on serine 216. J. Biol. Chem. 269, 30461–30469 (1994).
    CAS PubMed Google Scholar
  24. Liu, F., Stanton, J. J., Wu, Z. & Piwnica-Worms, H. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell. Biol. 17, 571–583 (1997).
    Article CAS Google Scholar
  25. van der Geer, P. & Hunter, T. Phosphopeptide mapping and phsophoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis 15, 544–554 (1994).
    Article CAS Google Scholar
  26. Moreno, S., Klar, A. & Nurse, P. in Guide to Yeast Genetics and Molecular Biology (eds Guthrie, C. & Fink, G. R.) 795–823 (Academic, San Diego, 1991).
    Book Google Scholar
  27. Lee, M. S., Enoch, T. & PiwnicapWorms, H. Mik1+ encodes a tyrosine kinase that phosphorylates p34cdc2 on tyrosine 15. J. Biol. Chem. 269, 30530–30537 (1994).
    CAS PubMed Google Scholar
  28. Maundrell, K. nmt1 of fission yeast. J. Biol. Chem. 265, 10857–10864 (1990).
    CAS Google Scholar
  29. Kostrub, C. et al. Molecular analysis of hus1+, a fission yeast gene required for S-M and DNA damage checkpoints. Mol. Gen. Genet. 254, 389–399 (1997).
    CAS PubMed Google Scholar
  30. Moreno, S., Nurse, P. & Russell, P. Regulation of mitosis by cyclic accumulation of p80cdc25 mitotic inducer in fission yeast. Nature 344, 549–552 (1990).
    Article ADS CAS Google Scholar

Download references