Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins (original) (raw)

References

  1. Tsien, R. Y. Fluorescent probes of cell signaling. Annu. Rev. Neurosci. 12, 227–253 (1989).
    Article CAS Google Scholar
  2. Miesenböck, G. & Rothman, J. E. Patterns of synaptic activity in neural networks recorded by light emission from synaptolucins. Proc. Natl Acad. Sci. USA 94, 3402–3407 (1997).
    Article ADS Google Scholar
  3. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).
    Article ADS CAS Google Scholar
  4. Romoser, V. A., Hinkle, P. M. & Persechini, A. Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. J. Biol. Chem. 272, 13270–13274 (1997).
    Article CAS Google Scholar
  5. Anderson, R. G. & Orci, L. Aview of acidic intracellular compartments. J. Cell Biol. 106, 539–543 (1988).
    Article CAS Google Scholar
  6. Südhof, T. C. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375, 645–653 (1995).
    Article ADS Google Scholar
  7. Ward, W. W. in Bioluminescence and Chemiluminescence (eds DeLuca, M. A. & McElroy, W. D.) 235–242 (Academic, New York, (1981)).
    Book Google Scholar
  8. Ward, W. W., Prentice, H. J., Roth, A. F., Cody, C. W. & Reeves, S. C. Spectral perturbations of the Aequorea green-fluorescent protein. Photochem. Photobiol. 35, 803–808 (1982).
    Article CAS Google Scholar
  9. Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA 91, 12501–12504 (1994).
    Article ADS CAS Google Scholar
  10. Chattoraj, M., King, B. A., Bublitz, G. U. & Boxer, S. G. Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer. Proc. Natl Acad. Sci. USA 93, 8362–8367 (1996).
    Article ADS CAS Google Scholar
  11. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).
    Article ADS Google Scholar
  12. Yang, F., Moss, L. G. & Phillips, G. N. J The molecular structure of green fluorescent protein. Nature Biotechnol. 14, 1246–1251 (1996).
    Article CAS Google Scholar
  13. Brejc, K. et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl Acad. Sci. USA 94, 2306–2311 (1997).
    Article ADS CAS Google Scholar
  14. Ehrig, T., O'Kane, D. J. & Prendergast, F. G. Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett. 367, 163–166 (1995).
    Article CAS Google Scholar
  15. Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).
    Article CAS Google Scholar
  16. Caras, I. W., Weddell, G. N., Davitz, M. A., Nussenzweig, V. & Martin, D. W. J Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science 238, 1280–1283 (1987).
    Article ADS CAS Google Scholar
  17. Luzio, J. P. et al. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). Biochem. J. 270, 97–102 (1990).
    Article CAS Google Scholar
  18. McMahon, H. T. et al. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346–349 (1993).
    Article ADS CAS Google Scholar
  19. Marconi, P. et al. Replication-defective herpes simplex virus vectors for gene transfer in vivo. Proc. Natl Acad. Sci. USA 93, 11319–11320 (1996).
    Article ADS CAS Google Scholar
  20. Lawrence, M. S., Ho, D. Y., Dash, R. & Sapolsky, R. M. Herpes simplex virus vectors overexpressing the glucose transporter gene protect against seizure-induced neuron loss. Proc. Natl Acad. Sci. USA 92, 7247–7251 (1995).
    Article ADS CAS Google Scholar
  21. Stevens, C. F. & Tsujimoto, T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc. Natl Acad. Sci. USA 92, 846–849 (1995).
    Article ADS CAS Google Scholar
  22. Roa, M., Paumet, F., Le Mao, J., David, B. & Blank, U. Involvement of the _ras_-like GTPase rab3d inRBL-2H3 mast cell exocytosis following stimulation via high-affinity IgE receptors (FcεRI). J.Immunol. 159, 2815–2823 (1997).
    PubMed CAS Google Scholar
  23. Fernandez, J. M., Neher, E. & Gomperts, B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312, 453–455 (1984).
    Article ADS CAS Google Scholar
  24. Chandler, D. E. & Heuser, J. E. Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol. 86, 666–674 (1980).
    Article CAS Google Scholar
  25. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).
    Article CAS Google Scholar
  26. Yu, S. S., Lefkowitz, R. J. & Hausdorff, W. P. β-Adrenergic receptor sequestration: A potential mechanism of receptor resensitization. J. Biol. Chem. 268, 337–341 (1993).
    PubMed CAS Google Scholar
  27. James, D. E. & Piper, R. C. Insulin resistance, diabetes, and the insulin-regulated trafficking of GLUT-4. J. Cell Biol. 126, 1123–1126 (1994).
    Article CAS Google Scholar
  28. Siemering, K. R., Golbik, R., Sever, R. & Haseloff, J. Mutations that suppress the thermosensitivity of green fluorescent protein. Curr. Biol. 6, 1653–1663 (1996).
    Article CAS Google Scholar

Download references