The MAPK cascade is required for mammalian associative learning (original) (raw)
Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.)232, 331–356 (1973). ArticleCAS Google Scholar
Bliss, T. V. P. & Gardner-Medwin, A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.)232, 357–374 ( 1973). ArticleCAS Google Scholar
Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiat.20, 11–21 ( 1957). ArticleCAS Google Scholar
Ranck, J. B. Jr Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp. Neurol.41, 461–531 ( 1973). Article Google Scholar
Larson, J., Wong, D. & Lynch, G. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res.368 , 347–350 (1986). ArticleCAS Google Scholar
Izquierdo, I. & Medina, J. H. Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. Neurobiol. Learn. Mem.63, 19–32 ( 1995). ArticleCAS Google Scholar
Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron20, 445–468 ( 1998). ArticleCAS Google Scholar
Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature390, 604– 607 (1997). ArticleCAS Google Scholar
McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro . Nature390, 607–611 (1997). ArticleCAS Google Scholar
Roberson, E. D., English, J. D. & Sweatt, J. D. A biochemist's view of long-term potentiation. Learn. Mem.3, 1–24 ( 1996). ArticleCAS Google Scholar
English, J. D. & Sweatt, J. D. Activation of p42 mitogen-activated protein kinase in hippocampal long-term potentiation. J. Biol. Chem.271, 24329– 24332 (1996). ArticleCAS Google Scholar
English, J. D. & Sweatt, J. D. A requirement for the mitogen-activated protein kinase cascade in hippocampal long-term potentiation. J. Biol. Chem.272, 19103– 19106 (1997). ArticleCAS Google Scholar
Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science257, 206–211 (1992). ArticleCAS Google Scholar
Griffith, L. C. et al. Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron10, 501–509 (1993). ArticleCAS Google Scholar
Wolfman, C. et al. Intrahippocampal or intraamygdala infusion of KN62, a specific inhibitor of calcium/calmodulin-dependent protein kinase II, causes retrograde amnesia in the rat. Behav. Neural Biol.61, 203–205 (1994). ArticleCAS Google Scholar
Jerusalinsky, D. et al. Post-training intrahippocampal infusion of protein kinase C inhibitors causes amnesia in rats. Behav. Neural Biol.61, 107–109 (1994). ArticleCAS Google Scholar
Nogues, X., Jaffard, R. & Micheau, J. Investigations on the role of hippocampal protein kinase C on memory processes: pharmacological approach. Behav. Brain. Res.75, 139–146 ( 1996). ArticleCAS Google Scholar
Tan, S.-E. & Liang, K.-C. Spatial learning alters hippocampal calcium/calmodulin-dependent protein kinase II activity in rats. Brain Res.711, 234–240 (1996). ArticleCAS Google Scholar
Tan, S.-E. & Liang, K.-C. Inhibitory avoidance learning alters the amygdala calcium/calmodulin-dependent protein kinase II activity in rats. Brain Res.748, 227–233 (1997). ArticleCAS Google Scholar
Yasoshima, Y. & Yamamoto, T. Rat gustatory memory requires protein kinase C activity in the amygdala and cortical gustatory area. NeuroReport8, 1363–1367 (1997). ArticleCAS Google Scholar
Grunbaum, L. & Muller, U. Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J. Neurosci.18, 4384 –4392 (1998). ArticleCAS Google Scholar
Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science256, 675– 677 (1992). ArticleCAS Google Scholar
Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neuro.106, 274– 285 (1992). ArticleCAS Google Scholar
Kim, J. J., Rison, R. A. & Fanselow, M. S. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav. Neurosci.107, 1093–1098 ( 1993). ArticleCAS Google Scholar
Sweatt, J. D. et al. Protected-site phosphorylation of protein kinase C in hippocampal long-term potentiation. J. Neurochem.71, 1075–1085 (1998). ArticleCAS Google Scholar
Thiel, G., Czernik, A. J., Gorelick, F., Nairn, A. C. & Greengard, P. Ca2+/calmodulin-dependent protein kinase II: identification of threonine-286 as the autophosphorylation site in the alpha subunit associated with the generation of Ca2+-independent activity. Proc. Natl. Acad. Sci. USA85, 6337– 6341 (1988). ArticleCAS Google Scholar
Silva, A. J., Stevens, C. F., Tonegawa, S. & Wang, Y. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science257, 201– 206 (1992). ArticleCAS Google Scholar
Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science276, 2042–2045 (1997). ArticleCAS Google Scholar
Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science279, 870– 873 (1998). ArticleCAS Google Scholar
Kim, J. J., DeCola, J. P., Landeira-Fernandez, J. & Fanselow, M. S. _N_-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning. Behav. Neuro.105, 126–133 (1991). ArticleCAS Google Scholar
Bordi, F., Marcon, C., Chiamulera, C. & Reggiani, A. Effects of the metabotropic glutamate receptor antagonist MCPG on spatial and context-specific learning. Neuropharmacology35 , 1557–1565 (1996). ArticleCAS Google Scholar
Hargreaves, E. L. & Cain, D. P. Hyperactivity, hyper-reactivity, and sensorimotor deficits induced by low doses of the _N_-methyl-D-aspartate non-competitive channel blocker MK801. Behav. Brain. Res.47, 23–33 (1992). ArticleCAS Google Scholar
Favata, M. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem.273, 18623–18632 (1998). ArticleCAS Google Scholar
Stevens, C. F. A million dollar question: does LTP = memory? Neuron20, 1–2 (1998). ArticleCAS Google Scholar
Roberson, E. D. & Sweatt, J. D. Transient activation of cyclic AMP-dependent protein kinase during long-term potentiation. J. Biol. Chem.271, 30436–30441 (1996). ArticleCAS Google Scholar
Brambilla, R. et al. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature390, 281– 286 (1997). ArticleCAS Google Scholar
Crow, T., Xue-Bian, J.-J., Siddiqi, V., Kang, T. & Neary, J. T. Phosphorylation of mitogen-activated protein kinase by one-trial and multi-trial classical conditioning. J. Neurosci.18, 3480–3487 (1998). ArticleCAS Google Scholar
Martin, K. C. et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron18, 899–912 ( 1997). ArticleCAS Google Scholar
Michael, D. et al. Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia . Proc. Natl. Acad. Sci. USA95, 1864 –1869 (1998). ArticleCAS Google Scholar
Fiore, R. S. et al. p42 mitogen-activated protein kinase in brain: prominent localization in neuronal cell bodies and dendrites. Neuroscience55, 463–472 ( 1993). ArticleCAS Google Scholar
Jovanovic, J. N. et al. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc. Natl. Acad. Sci. USA93, 3679–3683 (1996). ArticleCAS Google Scholar
Lin, L.-L. et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell72, 269–278 ( 1993). ArticleCAS Google Scholar
Brugg, B. & Matus, A. Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells. J. Cell Biol.114, 735– 743 (1991). ArticleCAS Google Scholar
Xing, J., Ginty, D. D. & Greenberg, M. E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science273, 959–963 (1996). ArticleCAS Google Scholar
Seger, R. & Krebs, E. G. The MAPK signaling cascade. FASEB J.9, 726–735 ( 1995). ArticleCAS Google Scholar
Brunet, A. & Pouyssegur, J. Mammalian MAP kinase modules: how to transduce specific signals. Essays Biochem.32, 1–16 (1997). CASPubMed Google Scholar
Treisman, R. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol.8, 205–215 ( 1996). ArticleCAS Google Scholar
Paylor, R. et al. α7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of _Acra7_-deficient mice. Learn. Mem. (in press).
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 ( 1951). CASPubMed Google Scholar