Transcriptional activators direct histone acetyltransferase complexes to nucleosomes (original) (raw)
References
Brownell, J. E. & Allis, C. D. Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev.6, 176–184 (1996). ArticleCAS Google Scholar
Grant, P. A.et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev.11, 1640–1650 (1997). ArticleCAS Google Scholar
Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell87, 953–959 (1996). ArticleCAS Google Scholar
Bannister, A. J. & Kouzarides, T. The CBP coactivator is a histone acetyltransferase. Nature384, 641–643 (1996). ArticleADSCAS Google Scholar
Yang, X.-J., Ogryzko, V., Nishikawa, J., Howard, B. H. & Nakatani, Y. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature382, 319–324 (1996). ArticleADSCAS Google Scholar
Spencer, T. E.et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature389, 194–198 (1997). ArticleADSCAS Google Scholar
Chen, H.et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell90, 569–580 (1997). ArticleCAS Google Scholar
Mizzen, C. A.et al. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell87, 1261–1270 (1996). ArticleCAS Google Scholar
Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev.12, 599–606 (1998). ArticleCAS Google Scholar
Marcus, G. A., Horiuchi, J., Silverman, N. & Guarente, L. ADA5/SPT20 links the ADA and SPT genes, which are involved in yeast transcription. Mol. Cell. Biol.16, 3197–3205 (1996). ArticleCAS Google Scholar
Roberts, S. M. & Winston, F. SPT20/ADA5 encodes a novel protein functionally related to the TAT-binding protein and important for transcription in Saccharomyces cerevisiae. Mol. Cell. Biol.16, 3206–3213 (1996). ArticleCAS Google Scholar
Kuo, M.-H., Zhou, J., Jambeck, P., Churchill, M. E. A. & Allis, C. D. Histone acetylgransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev.12, 627–639 (1998). ArticleCAS Google Scholar
Berger, S. L.et al. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell70, 251–265 (1992). ArticleCAS Google Scholar
Piña, B.et al. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol. Cell. Biol.13, 5981–5989 (1993). Article Google Scholar
Silverman, N., Agapite, J. & Guarente, L. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription. Proc. Natl Acad. Sci. USA91, 11665–11668 (1994). ArticleADSCAS Google Scholar
Barlev, N. A.et al. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem.270, 19337–19344 (1995). ArticleCAS Google Scholar
Triezenberg, S. J., Kingsbury, R. C. & McKnight, S. L. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev.2, 718–729 (1988). ArticleCAS Google Scholar
Berger, S. L., Cress, W. D., Cress, A., Triezenberg, S. J. & Guarente, L. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: Evidence for transcriptional adaptors. Cell61, 1199–1208 (1990). ArticleCAS Google Scholar
Regier, J. L., Shen, F. & Treizenberg, S. J. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcription activator. Proc. Natl Acad. Sci. USA90, 883–887 (1993). ArticleADSCAS Google Scholar
Cress, W. D. & Triezenberg, S. J. Critical structural elements of the VP16 transcriptional activation domain. Science251, 87–90 (1991). ArticleADSCAS Google Scholar
Ingles, C. J., Shales, M., Cress, W. D., Trienzenberg, S. J. & Greenblatt, J. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature351, 588–590 (1991). ArticleADSCAS Google Scholar
Lin, Y.-S. & Green, M. G. Mechanism of action of an acidic transcriptional activator in vitro. Cell64, 971–981 (1991). ArticleCAS Google Scholar
Xiao, H.et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol.14, 7013–7024 (1994). ArticleCAS Google Scholar
Vettese-Dadey, M., Walter, P., Chen, H., Juan, L.-J. & Workman, J. L. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell. Biol.14, 970–981 (1994). ArticleCAS Google Scholar
Lin, Y. & S., Y. Carey, M. F., Ptashne, M. & Green, M. R. GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Cell54, 659–664 (1998). Article Google Scholar
Chasman, D. I., Leatherwood, J., Carey, M., Ptashne, M. & Kornberg, R. D. Activation of yeast polymerase II transcription by herpes virus VP16 and GAL4 derivatives in vitro. Mol. Cell. Biol.9, 4746–4749 (1989). ArticleCAS Google Scholar
Bradford, M. M. Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem.72, 248–254 (1976). ArticleCAS Google Scholar
Juan, L.-J., Utley, R. T., Vignali, M., Bohm, L. & Workman, J. L. H1-mediated repression of transcription factor binding to a stably positioned nucleosome. J. Biol. Chem.272, 3635–3640 (1997). ArticleCAS Google Scholar
Steger, D. J., Eberharter, A., John, S., Grant, P. A. & Workman, J. L. Purified histone acetyltransferases stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc. Natl Acad. Sci. USA(submitted).
Côté, J., Utley, R. T. & Workman, J. L. Basic analysis of transcription factor binding to nucleosomes. Meth. Mol. Genet.6, 108–129 (1995). Article Google Scholar
Utley, R. T.et al. In vitro analysis of transcription factor binding to nucleosomes and nucleosome disruption/displacement. Meth. Enzymol.274, 276–291 (1996). ArticleCAS Google Scholar