Transcriptional activators direct histone acetyltransferase complexes to nucleosomes (original) (raw)

References

  1. Brownell, J. E. & Allis, C. D. Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6, 176–184 (1996).
    Article CAS Google Scholar
  2. Grant, P. A.et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640–1650 (1997).
    Article CAS Google Scholar
  3. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).
    Article CAS Google Scholar
  4. Bannister, A. J. & Kouzarides, T. The CBP coactivator is a histone acetyltransferase. Nature 384, 641–643 (1996).
    Article ADS CAS Google Scholar
  5. Yang, X.-J., Ogryzko, V., Nishikawa, J., Howard, B. H. & Nakatani, Y. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).
    Article ADS CAS Google Scholar
  6. Spencer, T. E.et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194–198 (1997).
    Article ADS CAS Google Scholar
  7. Chen, H.et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).
    Article CAS Google Scholar
  8. Mizzen, C. A.et al. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261–1270 (1996).
    Article CAS Google Scholar
  9. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).
    Article CAS Google Scholar
  10. Marcus, G. A., Horiuchi, J., Silverman, N. & Guarente, L. ADA5/SPT20 links the ADA and SPT genes, which are involved in yeast transcription. Mol. Cell. Biol. 16, 3197–3205 (1996).
    Article CAS Google Scholar
  11. Roberts, S. M. & Winston, F. SPT20/ADA5 encodes a novel protein functionally related to the TAT-binding protein and important for transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 3206–3213 (1996).
    Article CAS Google Scholar
  12. Kuo, M.-H., Zhou, J., Jambeck, P., Churchill, M. E. A. & Allis, C. D. Histone acetylgransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12, 627–639 (1998).
    Article CAS Google Scholar
  13. Berger, S. L.et al. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70, 251–265 (1992).
    Article CAS Google Scholar
  14. Piña, B.et al. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol. Cell. Biol. 13, 5981–5989 (1993).
    Article Google Scholar
  15. Silverman, N., Agapite, J. & Guarente, L. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription. Proc. Natl Acad. Sci. USA 91, 11665–11668 (1994).
    Article ADS CAS Google Scholar
  16. Barlev, N. A.et al. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270, 19337–19344 (1995).
    Article CAS Google Scholar
  17. Triezenberg, S. J., Kingsbury, R. C. & McKnight, S. L. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2, 718–729 (1988).
    Article CAS Google Scholar
  18. Berger, S. L., Cress, W. D., Cress, A., Triezenberg, S. J. & Guarente, L. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: Evidence for transcriptional adaptors. Cell 61, 1199–1208 (1990).
    Article CAS Google Scholar
  19. Regier, J. L., Shen, F. & Treizenberg, S. J. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcription activator. Proc. Natl Acad. Sci. USA 90, 883–887 (1993).
    Article ADS CAS Google Scholar
  20. Cress, W. D. & Triezenberg, S. J. Critical structural elements of the VP16 transcriptional activation domain. Science 251, 87–90 (1991).
    Article ADS CAS Google Scholar
  21. Ingles, C. J., Shales, M., Cress, W. D., Trienzenberg, S. J. & Greenblatt, J. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature 351, 588–590 (1991).
    Article ADS CAS Google Scholar
  22. Lin, Y.-S. & Green, M. G. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64, 971–981 (1991).
    Article CAS Google Scholar
  23. Xiao, H.et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14, 7013–7024 (1994).
    Article CAS Google Scholar
  24. Vettese-Dadey, M., Walter, P., Chen, H., Juan, L.-J. & Workman, J. L. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell. Biol. 14, 970–981 (1994).
    Article CAS Google Scholar
  25. Lin, Y. & S., Y. Carey, M. F., Ptashne, M. & Green, M. R. GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Cell 54, 659–664 (1998).
    Article Google Scholar
  26. Chasman, D. I., Leatherwood, J., Carey, M., Ptashne, M. & Kornberg, R. D. Activation of yeast polymerase II transcription by herpes virus VP16 and GAL4 derivatives in vitro. Mol. Cell. Biol. 9, 4746–4749 (1989).
    Article CAS Google Scholar
  27. Bradford, M. M. Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72, 248–254 (1976).
    Article CAS Google Scholar
  28. Juan, L.-J., Utley, R. T., Vignali, M., Bohm, L. & Workman, J. L. H1-mediated repression of transcription factor binding to a stably positioned nucleosome. J. Biol. Chem. 272, 3635–3640 (1997).
    Article CAS Google Scholar
  29. Steger, D. J., Eberharter, A., John, S., Grant, P. A. & Workman, J. L. Purified histone acetyltransferases stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc. Natl Acad. Sci. USA(submitted).
  30. Côté, J., Utley, R. T. & Workman, J. L. Basic analysis of transcription factor binding to nucleosomes. Meth. Mol. Genet. 6, 108–129 (1995).
    Article Google Scholar
  31. Utley, R. T.et al. In vitro analysis of transcription factor binding to nucleosomes and nucleosome disruption/displacement. Meth. Enzymol. 274, 276–291 (1996).
    Article CAS Google Scholar

Download references