Perinuclear localization of chromatin facilitates transcriptional silencing (original) (raw)
References
Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with the silent information regulators Sir3 and Sir4: A model for the formation of heterochromatin in yeast. Cell80, 583–592 (1995). ArticleCAS Google Scholar
Triolo, T. & Sternglanz, R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature381, 251–253 (1996). ArticleADSCAS Google Scholar
Hecht, A., Strahl-Bolsinger, S. & Grunstein, M. Spreading of transcriptional repression by SIR3 from telomeric heterochromatin. Nature383, 92–96 (1996). ArticleADSCAS Google Scholar
Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions in core and extended telomeric heterochromatin in yeast. Genes Dev.11, 83–93 (1997). ArticleCAS Google Scholar
Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol.134, 1349–1363 (1996). ArticleCAS Google Scholar
Hiraoka, Y., Agard, D. A. & Sedat, J. W. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J. Cell. Biol.11, 2815–2828 (1990). Article Google Scholar
Funabiki, H., Hagan, I., Usawa, S. & Yanagida, M. Cell cycle dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol.121, 961–976 (1993). ArticleCAS Google Scholar
Marshall, W. F., Dernburg, A. F., Harmon, B., Agard, D. A. & Sedat, J. W. Specific interactions of chromatin with the nuclear envelope: Positional determination within the nucleus in Drosophila melanogaster. Mol. Biol. Cell7, 825–842 (1996). ArticleCAS Google Scholar
Brand, A. H., Breeden, L., Abraham, J., Sternglanz, R. & Nasmyth, K. Characterization of a “silencer” in yeast: A DNA sequence with properties opposite to those of a transcriptional enhancer. Cell41, 41–48 (1985). ArticleCAS Google Scholar
Chien, C.-T., Buck, S., Sternglanz, R. & Shore, D. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell75, 531–541 (1993). ArticleCAS Google Scholar
Buck, S. W. & Shore, D. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev.9, 370–384 (1995). ArticleCAS Google Scholar
Marcand, S., Buck, S. W., Moretti, P., Gilson, E. & Shore, D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap1 protein. Genes Dev.10, 1297–1309 (1996). ArticleCAS Google Scholar
Munro, S. Sequences within and adjacent to the transmembrane segment of the α-2,6-sialyltransferase specify Golgi retention. EMBO J.10, 3577–3588 (1991). ArticleCAS Google Scholar
Machamer, C. E. et al. Retention of a cis Golgi protein requires polar residues on one face of a predicted α-helix in the transmembrane domain. Mol. Biol. Cell4, 695–704 (1993). ArticleCAS Google Scholar
Dean, N. & Poster, J. Molecular and phenotypic analysis of the S. cerevisiae MNN10 gene identifies a family of related glycosyltransferases. Glycobiology6, 73–81 (1996). ArticleCAS Google Scholar
Zufferey, R. et al. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J.14, 4949–4960 (1995). ArticleCAS Google Scholar
Karaoglu, D., Kelleher, D. J. & Gilmore, R. The highly conserved Stt3 protein is a subunit of the yeast oligosaccharyltransferase and forms a subcomplex with Ost3p and Ost4p. J. Biol. Chem.272, 32513–32520 (1997). ArticleCAS Google Scholar
Khosravi-Far, R. et al. Isoprenoid modifcation of rab proteins terminating in CC or CXC motifs. Proc. Natl Acad. Sci. USA88, 6264–6268 (1991). ArticleADSCAS Google Scholar
Kinsella, B. T. & Maltese, W. A. rab GTP-binding proteins with three different carboxyl-terminal cysteine motifs are modified in vivo by 20-carbon isoprenoids. J. Biol. Chem.267, 3940–3945 (1992). CASPubMed Google Scholar
Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev.10, 1796–1811 (1996). ArticleCAS Google Scholar
Stone, E. M., Swanson, M. J., Romeo, A. M., Hicks, J. B. & Sternglanz, R. The SIR1 gene of Saccharomyces cerevisiae and its role as an extragenic suppressor of several mating-defective mutants. Mol. Cell. Biol.11, 2253–2262 (1991). ArticleCAS Google Scholar
Renauld, H. et al. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and SIR3 dosage. Genes Dev.7, 1133–1145 (1993). ArticleCAS Google Scholar
Ma, J. & Ptashne, M. Anew class of yeast transcriptional activators. Cell51, 113–119 (1987). ArticleCAS Google Scholar
Pringle, J. R., Adams, A. E. M., Drubin, G. & Haarer, B. K. Guide to yeast genetics and molecular biology. Meth. Enzymol.194, 565–602 (1991). ArticleCAS Google Scholar
Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (CSHL Press, Cold Spring Harbor, NY, (1988)). Google Scholar
Kaiser, C. A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell61, 723–733 (1990). ArticleCAS Google Scholar