Perinuclear localization of chromatin facilitates transcriptional silencing (original) (raw)

References

  1. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with the silent information regulators Sir3 and Sir4: A model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).
    Article CAS Google Scholar
  2. Triolo, T. & Sternglanz, R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381, 251–253 (1996).
    Article ADS CAS Google Scholar
  3. Hecht, A., Strahl-Bolsinger, S. & Grunstein, M. Spreading of transcriptional repression by SIR3 from telomeric heterochromatin. Nature 383, 92–96 (1996).
    Article ADS CAS Google Scholar
  4. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).
    Article CAS Google Scholar
  5. Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).
    Article CAS Google Scholar
  6. Hiraoka, Y., Agard, D. A. & Sedat, J. W. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J. Cell. Biol. 11, 2815–2828 (1990).
    Article Google Scholar
  7. Funabiki, H., Hagan, I., Usawa, S. & Yanagida, M. Cell cycle dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol. 121, 961–976 (1993).
    Article CAS Google Scholar
  8. Marshall, W. F., Dernburg, A. F., Harmon, B., Agard, D. A. & Sedat, J. W. Specific interactions of chromatin with the nuclear envelope: Positional determination within the nucleus in Drosophila melanogaster. Mol. Biol. Cell 7, 825–842 (1996).
    Article CAS Google Scholar
  9. Brand, A. H., Breeden, L., Abraham, J., Sternglanz, R. & Nasmyth, K. Characterization of a “silencer” in yeast: A DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41, 41–48 (1985).
    Article CAS Google Scholar
  10. Chien, C.-T., Buck, S., Sternglanz, R. & Shore, D. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75, 531–541 (1993).
    Article CAS Google Scholar
  11. Buck, S. W. & Shore, D. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev. 9, 370–384 (1995).
    Article CAS Google Scholar
  12. Marcand, S., Buck, S. W., Moretti, P., Gilson, E. & Shore, D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap1 protein. Genes Dev. 10, 1297–1309 (1996).
    Article CAS Google Scholar
  13. Munro, S. Sequences within and adjacent to the transmembrane segment of the α-2,6-sialyltransferase specify Golgi retention. EMBO J. 10, 3577–3588 (1991).
    Article CAS Google Scholar
  14. Machamer, C. E. et al. Retention of a cis Golgi protein requires polar residues on one face of a predicted α-helix in the transmembrane domain. Mol. Biol. Cell 4, 695–704 (1993).
    Article CAS Google Scholar
  15. Dean, N. & Poster, J. Molecular and phenotypic analysis of the S. cerevisiae MNN10 gene identifies a family of related glycosyltransferases. Glycobiology 6, 73–81 (1996).
    Article CAS Google Scholar
  16. Zufferey, R. et al. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J. 14, 4949–4960 (1995).
    Article CAS Google Scholar
  17. Karaoglu, D., Kelleher, D. J. & Gilmore, R. The highly conserved Stt3 protein is a subunit of the yeast oligosaccharyltransferase and forms a subcomplex with Ost3p and Ost4p. J. Biol. Chem. 272, 32513–32520 (1997).
    Article CAS Google Scholar
  18. Khosravi-Far, R. et al. Isoprenoid modifcation of rab proteins terminating in CC or CXC motifs. Proc. Natl Acad. Sci. USA 88, 6264–6268 (1991).
    Article ADS CAS Google Scholar
  19. Kinsella, B. T. & Maltese, W. A. rab GTP-binding proteins with three different carboxyl-terminal cysteine motifs are modified in vivo by 20-carbon isoprenoids. J. Biol. Chem. 267, 3940–3945 (1992).
    CAS PubMed Google Scholar
  20. Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996).
    Article CAS Google Scholar
  21. Stone, E. M., Swanson, M. J., Romeo, A. M., Hicks, J. B. & Sternglanz, R. The SIR1 gene of Saccharomyces cerevisiae and its role as an extragenic suppressor of several mating-defective mutants. Mol. Cell. Biol. 11, 2253–2262 (1991).
    Article CAS Google Scholar
  22. Renauld, H. et al. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and SIR3 dosage. Genes Dev. 7, 1133–1145 (1993).
    Article CAS Google Scholar
  23. Ma, J. & Ptashne, M. Anew class of yeast transcriptional activators. Cell 51, 113–119 (1987).
    Article CAS Google Scholar
  24. Pringle, J. R., Adams, A. E. M., Drubin, G. & Haarer, B. K. Guide to yeast genetics and molecular biology. Meth. Enzymol. 194, 565–602 (1991).
    Article CAS Google Scholar
  25. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (CSHL Press, Cold Spring Harbor, NY, (1988)).
    Google Scholar
  26. Kaiser, C. A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723–733 (1990).
    Article CAS Google Scholar

Download references