In vivo consequences of plasmid topology (original) (raw)

Nature volume 292, pages 380–382 (1981)Cite this article

Abstract

The topology and physical chemistry of closed circular DNA molecules are well understood, but the significance for events within living cells is less well appreciated. It has been demonstrated recently1–3 that the torsional constraint which arises from negative supercoiling (that is, reduction of linkage) can induce localized novel secondary structure in isolated plasmid and phage DNA. Inverted repeats adopt hairpin-loop structures not found in relaxed DNA. This structural perturbation might be expected to have functional significance within the living cell, but clearly this requires that the torsional free energy be available for unhindered partition between alterations of twist and writhe. Microheterogeneity in DNA structure has recently attracted considerable interest, especially with regard to left-handed sections of duplex4–6. The inverted repeats identified as sites of hairpin formation are relatively small, with stems of 13 base pairs (bp) or less. Whilst these hairpins could result in a relaxation of ∼10% of the plasmid supercoiling energy, it was of considerable interest to try to construct stem–loop features about 10 times larger so as to study the topological consequences. In the cloning experiment described here, designed to produce direct or inverted 130-bp repeats depending on insertional orientation, no inverse species could be discovered, and deletion events were frequent. It is concluded that the inverted repeat deprives Escherichia coli of its antibiotic resistance. Cruciform adoption by the inverted species can totally relax the torsional constraint in the plasmid. These experiments highlight the importance of topological considerations in the genetics of closed circular DNA, and confirm the availability of torsional constraint in vivo.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Lilley, D. M. J. Proc. natn. Acad. Sci. U.S.A. 77, 6468–6472 (1980).
    Article ADS CAS Google Scholar
  2. Panayotatos, N. & Wells, R. D. Nature 289, 466–470 (1981).
    Article ADS CAS Google Scholar
  3. Lilley, D. M. J. Nucleic Acids Res. 9, 1271–1289 (1981).
    Article ADS CAS Google Scholar
  4. Wang, H-K. et al. Nature 282, 680–686 (1979).
    Article ADS CAS Google Scholar
  5. Drew, H., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. Nature 286, 567–573 (1980).
    Article ADS CAS Google Scholar
  6. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1980).
    Article ADS CAS Google Scholar
  7. Twigg, A. J. & Sherratt, D. Nature 283, 216–218 (1980).
    Article ADS CAS Google Scholar
  8. Birnboim, H. C. & Doly, J. Nucleic Acids Res. 7, 1513–1523 (1979).
    Article CAS Google Scholar
  9. Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 76, 200–203 (1979).
    Article ADS CAS Google Scholar
  10. Vinograd, J. & Lebowitz, J. J. gen. Physiol. 49, 103–125 (1966).
    Article CAS Google Scholar
  11. Fuller, F. B. Proc. natn. Acad. Sci. U.S.A. 68, 815–819 (1971).
    Article ADS CAS Google Scholar
  12. Shishido, K. FEES Lett. 111, 333–336 (1980).
    Article CAS Google Scholar
  13. Bolivar, F. et al. Proc. natn. Acad. Sci. U.S.A. 74, 5265–5269 (1977).
    Article ADS CAS Google Scholar
  14. Sadler, J. R. et al. Gene 3, 211–232 (1978).
    Article CAS Google Scholar
  15. Gellert, M., Mizuuchi, K., O'Dea, M. H., Ohmori, H. & Tomizawa, J. Cold Spring Harb. Symp. quant. Biol. 43, 35–40 (1978).
    Article Google Scholar
  16. Behnke, K., Malke, H., Hartmann, M. & Walter, F. Plasmid 2, 605–616 (1979).
    Article CAS Google Scholar
  17. Wang, J. C. J. molec. Biol. 87, 797–816 (1974).
    Article CAS Google Scholar
  18. Richardson, J. P. Biochemistry 13, 3164–3169 (1974).
    Article CAS Google Scholar
  19. Ullrich, A. et al. Science 196, 1313–1319 (1977).
    Article ADS CAS Google Scholar
  20. Maniatis, T., Jeffrey, A. & Van de Sande, H. Biochemistry 14, 3787–3794 (1975).
    Article CAS Google Scholar
  21. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).
    Article ADS CAS Google Scholar
  22. Boyer, H. W. & Roullard-Dussoix, D. J. molec. Biol 41, 459–472 (1969).
    Article CAS Google Scholar
  23. Cohen, S. N., Chang, A. C. Y. & Hsu, L. Proc. natn. Acad. Sci. U.S.A. 69, 2110–2114 (1972).
    Article ADS CAS Google Scholar
  24. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1979).
    Article CAS Google Scholar
  25. Katz, L., Kingsbury, D. K. & Helinski, D. R. J. Bact. 114, 557–591 (1973).
    Google Scholar
  26. Keller, W. Proc. natn. Acad. Sci. U.S.A. 72, 4876–4880 (1975).
    Article ADS CAS Google Scholar
  27. Shure, M. & Vinograd, J. Cell 8, 215–226 (1976).
    Article CAS Google Scholar
  28. Sharp, P. A., Sugden, B. & Sambrook, J. Biochemistry 12, 3055–3063 (1973).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Molecular Genetics Department, Searle Research Laboratories, Lane End Road, High Wycombe, HP12 4HL, UK
    David M. J. Lilley

Authors

  1. David M. J. Lilley
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Lilley, D. In vivo consequences of plasmid topology.Nature 292, 380–382 (1981). https://doi.org/10.1038/292380a0

Download citation

This article is cited by