Evidence that a human β-tubulin pseudogene is derived from its corresponding mRNA (original) (raw)

Nature volume 297, pages 83–84 (1982)Cite this article

Abstract

Pseudogenes—sequences which are homologous to functional genes but which contain mutational changes precluding the formation of a functional product—seem to be a common feature of eukaryotic genomes. Such sequences were first described in the 5S gene of _Xenopus laevis_1 and have since been found in several gene families including those of the _α_- and β_-globins of several species2–10, immunoglobulin V_κ genes11, the actin genes of _Dictyostelium_12 and the small nuclear RNA genes of man13. Among the globin pseudogenes, there appear to be two kinds of structural organization: genes that have retained their intervening sequences4–7 and those that have lost them completely2,3. A possible explanation for the generation of such intron-lacking genes involves the reverse transcription of a processed mRNA to form cDNA, and the introduction of this cDNA copy into the genome either by recombinant heteroduplex formation2, insertion into a staggered chromosomal break3, or via a retrovirus intermediate14. Here we report the complete sequence of a human _β_-tubulin pseudogene. The sequence data reveal the absence of any intervening sequences, and the presence, in the genome, of an uninterrupted 17 base-pair (bp) tract of A residues 14 base-pairs 3′ to a poly(A) signal (AATAAA)15. This sequence organization corresponds closely to the sequence organization of the poly(A) signal and poly (A) tract in a _β_-tubulin mRNA16.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Jacq, D., Miller, J. R. & Brownlee, G. G. Cell 12, 109–120 (1977).
    Article CAS Google Scholar
  2. Nishioka, Y., Leder, A. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 77, 2806–2809 (1980).
    Article ADS CAS Google Scholar
  3. Vanin, E. F., Goldberg, G. I., Tucker, P. W. & Smithies, O. Nature 286, 222–226 (1980).
    Article ADS CAS Google Scholar
  4. Jahn, C. L. et al. Cell 21, 159–168 (1980).
    Article CAS Google Scholar
  5. Lacy, E. & Maniatis, T. Cell 21, 545–553 (1980).
    Article CAS Google Scholar
  6. Proudfoot, N. J. & Maniatis, T. Cell 21, 537–554 (1980).
    Article CAS Google Scholar
  7. Cleary, M. L., Schon, E. A. & Lingrel, J. B. Cell 26, 181–190 (1981).
    Article CAS Google Scholar
  8. Lacy, E., Hardison, R. C., Quon, D. & Maniatis, T. Cell 18, 1273–1283 (1979).
    Article CAS Google Scholar
  9. Proudfoot, N. J., Shander, M. H., Manley, J. L., Gefter, M. & Maniatis, T. Science 209, 1329–1336 (1980).
    Article ADS CAS Google Scholar
  10. Leder, A., Swan, D., Ruddle, F., D'Eustachio, P. & Leder, P. Nature 293, 196–200 (1981).
    Article ADS CAS Google Scholar
  11. Bentley, D. L. & Rabbitts, T. H. Nature 288, 730–733 (1980).
    Article ADS CAS Google Scholar
  12. Firtel, R. A., Timon, R., Kimmel, A. R. & McKeown, M. Proc. natn. Acad. Sci. U.S.A. 76, 6206–6210 (1979).
    Article ADS CAS Google Scholar
  13. Van Arsdell, S. W. et al. Cell 26, 11–17 (1981).
    Article CAS Google Scholar
  14. Goff, S. P., Gilboa, E., Witte, O. N. & Baltimore, D. Cell 22, 777–785 (1980).
    Article CAS Google Scholar
  15. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).
    Article ADS CAS Google Scholar
  16. Valenzuela, P. et al. Nature 289, 650–655 (1981).
    Article ADS CAS Google Scholar
  17. Cowan, N. J., Wilde, C. D., Chow, L. T. & Wefald, F. Proc. natn. Acad. Sci. U.S.A. 78, 4877–4881 (1981).
    Article ADS CAS Google Scholar
  18. Wilde, C. D., Chow, L. T., Wefald, F. & Cowan, N. J. Proc. natn. Acad. Sci. U.S.A. 79, 96–100 (1982).
    Article ADS CAS Google Scholar
  19. Wilde, C. D., Crowther, C. E. & Cowan, N. J. J. molec. Biol. (in the press).
  20. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. J. molec. Biol. 143, 161–178 (1980).
    Article CAS Google Scholar
  21. Grunstein, M. & Hogness, D. S. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965 (1975).
    Article ADS CAS Google Scholar
  22. Cleveland, D. W. et al. Cell 20, 95–195 (1980).
    Article CAS Google Scholar
  23. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).
    Article CAS Google Scholar
  24. Benton, W. D. & Davis, R. W. Science 196, 180–181 (1977).
    Article ADS CAS Google Scholar
  25. Staden, R. Nucleic Acids Res. 8, 3673–3694 (1980).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Biochemical Sciences, Princeton University, Princeton, New Jersey, 08544, USA
    C. Deborah Wilde, Carol E. Crowther, T. P. Cripe, Mary Gwo-Shu Lee & N. J. Cowan

Authors

  1. C. Deborah Wilde
    You can also search for this author inPubMed Google Scholar
  2. Carol E. Crowther
    You can also search for this author inPubMed Google Scholar
  3. T. P. Cripe
    You can also search for this author inPubMed Google Scholar
  4. Mary Gwo-Shu Lee
    You can also search for this author inPubMed Google Scholar
  5. N. J. Cowan
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Wilde, C., Crowther, C., Cripe, T. et al. Evidence that a human _β_-tubulin pseudogene is derived from its corresponding mRNA.Nature 297, 83–84 (1982). https://doi.org/10.1038/297083a0

Download citation

This article is cited by