A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli (original) (raw)

Nature volume 312, pages 376–378 (1984)Cite this article

Abstract

Sporulation of Bacillus subtilis involves sequential morphological and biochemical changes and is regulated by specific genes (spo genes) estimated to occupy more than 30 loci1,2. A mutation in any one of these genes blocks the sporulation process at the corresponding developmental stage. Despite intensive genetic studies, the nature and function of the spo gene products remain unknown. Vegetative B. subtilis RNA polymerase core enzyme may interact with several sigma factors and discriminate among different classes of promoters3. During sporulation, new polypeptides are associated with the core enzyme which may have a central role in modifying its promoter recognition specificity3,4. As a first step to understanding their function in the switch from vegetative to sporulation mode, several early sporulation genes have been cloned and analysed5–7. Here we report the cloning and nucleotide sequence of the _spo_IIG gene of _B. subtilis_8,9. This gene encodes a polypeptide with a predicted relative molecular mass of 27,652 which contains a 65-amino acid region highly homologous to an internal part of the Escherichia coli sigma factor.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Piggot, P. J. & Coote, J. G. Bact. Rev. 40, 908–962 (1976).
    CAS PubMed Google Scholar
  2. Henner, D. J. & Hoch, J. A. Microbiol. Rev. 44, 57–82 (1980).
    CAS PubMed PubMed Central Google Scholar
  3. Losick, R. & Pero, J. Cell 25, 582–584 (1981).
    Article CAS Google Scholar
  4. Fukuda, R. & Doi, R. H. J. Bact. 129, 422–432 (1977).
    CAS PubMed Google Scholar
  5. Shimotsu, H., Kawamura, F., Kobayashi, Y. & Saito, H. Proc. natn. Acad. Sci. U.S.A. 80, 658–662 (1983).
    Article ADS CAS Google Scholar
  6. Ramakrishna, N., Dubnau, E. & Smith, I. Nucleic Acids Res. 12, 1779–1790 (1984).
    Article CAS Google Scholar
  7. Bouvier, J., Stragier, P., Bonamy, C. & Szulmajster, J. Proc. natn. Acad. Sci. U.S.A. (in the press).
  8. Young, M. J. Bact. 126, 928–936 (1976).
    CAS PubMed Google Scholar
  9. Ayaki, H. & Kobayashi, Y. J. Bact. 158, 507–512 (1984).
    CAS PubMed Google Scholar
  10. Bonamy, C. & Szulmajster, J. Molec. gen. Genet. 180, 57–65 (1982).
    Google Scholar
  11. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
    Article CAS Google Scholar
  12. McLaughlin, J. R., Murray, C. L. & Rabinowitz, J. C. J. biol. Chem. 256, 11283–11291 (1981).
    CAS PubMed Google Scholar
  13. Burton, Z. et al. Nucleic Acids Res. 9, 2889–2903 (1981).
    Article CAS Google Scholar
  14. Schwartz, R. M. & Dayhoff, M. O. Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.)353–358 (National Biomedical Research Foundation, Washington, D. C., 1978).
    Google Scholar
  15. Needleman, S. B. & Wunch, C. D. J. molec. Biol. 48, 443–453 (1970).
    Article CAS Google Scholar
  16. Smith, T. F., Waterman, M. S. & Fitch, W. M. J. molec. Evol. 18, 38–46 (1981).
    Article ADS CAS Google Scholar
  17. Nichols, B. P., Van Cleemput, M. & Yanosfsky, C. J. molec. Biol. 146, 45–54 (1981).
    Article CAS Google Scholar
  18. Band, L., Shimotsu, H. & Henner, D. J. Gene 27, 55–65 (1984).
    Article CAS Google Scholar
  19. Losick, R., Shorenstein, R. G. & Sonenshein, A. L. Nature 227, 910–913 (1970).
    Article ADS CAS Google Scholar
  20. Shorenstein, R. G. & Losick, R. J. biol. Chem. 248, 6170–6173 (1973).
    CAS PubMed Google Scholar
  21. Achbeyer, E. C. & Whiteley, H. R. J. biol. Chem. 255, 11957–11964 (1980).
    Google Scholar
  22. Wong, S. L. & Doi, R. H. J. biol. Chem. 257, 11932–11936 (1982).
    CAS PubMed Google Scholar
  23. Haldenwang, W. G., Lang, N. & Losick, R. Cell 23, 615–624 (1981).
    Article CAS Google Scholar
  24. Linn, T., Greenleaf, A. L. & Losick, R. J. biol. Chem. 250, 9256–9261 (1975).
    CAS PubMed Google Scholar
  25. Ehrlich, S. D. Proc. natn. Acad. Sci. U.S.A. 75, 1433–1436 (1978).
    Article ADS CAS Google Scholar
  26. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).
    Article CAS Google Scholar
  27. Landick, R. et al. Cell 38, 175–182 (1984).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Institut de Microbiologie, Bâtiment 409, Université Paris-Sud, 91405, Orsay Cedex, France
    Patrick Stragier & Jean Bouvier
  2. Laboratoire d'Enzymologie du CNRS, 91190, Gif-sur-Yvette, France
    Céline Bonamy & Jekisiel Szulmajster

Authors

  1. Patrick Stragier
    You can also search for this author inPubMed Google Scholar
  2. Jean Bouvier
    You can also search for this author inPubMed Google Scholar
  3. Céline Bonamy
    You can also search for this author inPubMed Google Scholar
  4. Jekisiel Szulmajster
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Stragier, P., Bouvier, J., Bonamy, C. et al. A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli.Nature 312, 376–378 (1984). https://doi.org/10.1038/312376a0

Download citation

This article is cited by