Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate (original) (raw)

Nature volume 315, pages 350–352 (1985)Cite this article

Abstract

Post-meiotic segregation of alleles, which is seen, for example, in the 5:3 distribution of alleles in the products of a single meiosis in fungi, has been thought to be due to the non-repair of heteroduplex regions formed during genetic recombination. In current models of genetic recombination, heteroduplex DNA is formed either as the primary intermediate generated by two interacting non-sister chromatids1 or as a short region flanking a double-stranded gap2. The frequency of post-meiotic segregation differs for different alleles, and this is presumed to reflect the varying efficiencies with which different types of mismatches in the heteroduplex are repaired. To gain some insight into this process, we have now determined the nucleotide sequences of various yeast alleles with different post-meiotic segregation frequencies and compared the mismatches predicted to occur in heteroduplexes of these alleles with wild-type DNA with those repaired with varying efficiency in bacterial systems. A striking correlation is observed, with the mismatches predicted for high post-meiotic segregation frequency alleles being similar to mismatches repaired with low efficiency in bacteria. These results support the view that post-meiotic segregation frequency reflects heteroduplex repair efficiency and the contention that meiotic gene conversion is the result of the successful repair of heteroduplex mismatches.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Meselson, M. S. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 72, 358–361 (1975).
    Article ADS CAS Google Scholar
  2. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. Cell 33, 25–35 (1983).
    Article CAS PubMed Google Scholar
  3. Fogel, S., Choi, T., Kilgore, D., Lusnak, K. & Williamson, M. Recent Adv. Yeast molec. Biol. 1, 269–288 (1982).
    Google Scholar
  4. Fogel, S. & Choi, T. in Trends in Molecular Genetics (eds Sinha, U. & Klingmüller, W.) 63–80 (Spectrum, Patna, 1985).
    Google Scholar
  5. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Meth. Enzym. 101, 228–245 (1983).
    Article CAS PubMed Google Scholar
  6. Messing, J. Meth. Enzym. 101, 20–78 (1983).
    Article CAS PubMed Google Scholar
  7. Esposito, M. S. Genetics 58, 507–527 (1968).
    CAS PubMed PubMed Central Google Scholar
  8. Beacham, I. R., Schweitzer, B. W., Warrick, H. M. & Carbon, J. Gene 29, 271–279 (1984).
    Article CAS PubMed Google Scholar
  9. Fogel, S., Mortimer, R. K. & Lusnak, K. in Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 289–339 (Cold Spring Harbor Laboratory, New York, 1981).
    Google Scholar
  10. Esposito, M. S. Molec. gen. Genet. 111, 297–299 (1971).
    Article CAS PubMed Google Scholar
  11. Thuriaux, P. et al. Curr. Genet. 1, 89–95 (1980).
    Article CAS PubMed Google Scholar
  12. De Boer, J. G. & Ripley, L. S. Proc. natn. Acad. Sci. U.S.A. 81, 5528–5531 (1984).
    Article ADS CAS Google Scholar
  13. Lacks, S. J. molec. Biol. 5, 119–131 (1962).
    Article CAS PubMed Google Scholar
  14. Ephrussi-Taylor, H. & Gray, T. C. J. gen. Physiol. 42, 211–231 (1966).
    Article Google Scholar
  15. Lacks, S. Genetics 53, 207–235 (1966).
    CAS PubMed PubMed Central Google Scholar
  16. Claverys, J.-P., Méjean, V., Gasc, A.-M. & Sicard, A. M. Proc. natn. Acad. Sci. U.S.A. 80, 5956–5960 (1983).
    Article ADS CAS Google Scholar
  17. Kramer, B., Kramer, W. & Fritz, H.-J. Cell 38, 879–887 (1984).
    Article CAS PubMed Google Scholar
  18. Williamson, M. S. thesis, Univ. California (1984).
  19. Donohue, T. F., Farabaugh, P. J. & Fink, G. R. Gene 18, 47–59 (1982).
    Article Google Scholar
  20. Gasc, A.-M. & Sicard, A. M. Genetics 90, 1–18 (1978).
    CAS PubMed PubMed Central Google Scholar
  21. Bennetzen, J. L. & Hall, B. D. J. biol. Chem. 257, 3018–3025 (1982).
    CAS PubMed Google Scholar
  22. Donahue, T. F., Daves, R. S., Lucchini, G. & Fink, G. R. Cell 32, 89–98 (1983).
    Article CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Genetics, University of California, Berkeley, California, 94720, USA
    James H. White, Karin Lusnak & Seymour Fogel

Authors

  1. James H. White
    You can also search for this author inPubMed Google Scholar
  2. Karin Lusnak
    You can also search for this author inPubMed Google Scholar
  3. Seymour Fogel
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

White, J., Lusnak, K. & Fogel, S. Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate.Nature 315, 350–352 (1985). https://doi.org/10.1038/315350a0

Download citation

This article is cited by