An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates (original) (raw)

Nature volume 317, pages 445–448 (1985)Cite this article

Abstract

The per locus has a fundamental involvement in the expression of biological rhythms in Drosophila. Mutations at this locus can shorten, lengthen or eliminate a variety of rhythmic activities that range from circadian behaviours, exemplified by eclosion and locomotor activities1,2, to short-period behaviour such as the 55-s rhythm of courtship song3. DNA from the per locus has been cloned4–7, and we have used P-element-mediated DNA transformation to establish that a 7.1-kilobase (kb) _Hin_dIII fragment contains a functional copy of the gene. This transforming DNA contains a single transcription unit which gives rise to a 4.5-kb poly(A)+ RNA5. Here we report the results of a search for sequences homologous to the per locus DNA in the genomic DNA of several species of vertebrates. An unusual, tandemly repeated sequence forming a portion of the 4.5-kb per transcript is homologous to DNA in chicken, mouse and man. Cloned DNAs from the mouse and Drosophila are related by long, uninterrupted tandem repetitions of the sequence ACNGGN. At the per locus, these tandem repeats are predicted to code for poly(Thr-Gly) tracts up to 48 amino acids long. These repeated sequences are also transcribed in the mouse. Several long tracts of poIy(Thr-Gly) appear to be encoded by DNA cloned from the mouse.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Konopka, R. & Benzer, S. Proc. natn. Acad. Sci. U.S.A. 68, 2112–2116 (1971).
    Article ADS CAS Google Scholar
  2. Young, M. W. & Judd, B. H. Genetics 88, 723–742 (1978).
    CAS PubMed PubMed Central Google Scholar
  3. Kyriacou, C. P. & Hall, J. C. Proc. natn. Acad. Sci. U.S.A. 77, 6729–6733 (1980).
    Article ADS CAS Google Scholar
  4. Bargiello, T. A. & Young, M. W. Proc. natn. Acad. Sci. U.S.A. 81, 2142–2146 (1984).
    Article ADS CAS Google Scholar
  5. Bargiello, T. A., Jackson, F. R. & Young, M. W. Nature 312, 752–754 (1984).
    Article ADS CAS Google Scholar
  6. Reddy, P. et al. Cell 38, 701–710 (1984).
    Article CAS Google Scholar
  7. Zehring, W. A. et al. Cell 39, 369–376 (1984).
    Article CAS Google Scholar
  8. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).
    Article CAS Google Scholar
  9. Dame, J. B. et al. Science 225, 593–599 (1984).
    Article ADS CAS Google Scholar
  10. Godson, G. N., Ellis, J., Svec, P., Schlesinger, D. H. & Nussenzweig, V. Nature 305, 29–33 (1983).
    Article ADS CAS Google Scholar
  11. Ravetch, J. V., Kochan, J. & Perkins, M. Science 227, 1593–1597 (1985).
    Article ADS CAS Google Scholar
  12. Kurjan, J. & Herskowitz, I. Cell 30, 933–943 (1982).
    Article CAS Google Scholar
  13. Dworkin-Rastl, E., Shrutkowski, A. & Dworkin, M. B. Cell 39, 321–325 (1984).
    Article CAS Google Scholar
  14. Tartof, K. Cold Spring Harb. Symp. quant. Biol. 38, 491–500 (1974).
    Article CAS Google Scholar
  15. Smith, G. P. Cold Spring Harb. Symp. quant. Biol. 38, 507–513 (1974).
    Article CAS Google Scholar
  16. Dover, G. Nature 299, 111–117 (1982).
    Article ADS CAS Google Scholar
  17. Bourdon, M. A., Oldberg, A., Pierschbacher, M. & Ruoslahti, E. Proc. natn. Acad. Sci. U.S.A. 82, 1321–1325 (1985).
    Article ADS CAS Google Scholar
  18. Dale, R. M. K., McClure, B. A. & Houchins, J. P. Plasmid 13, 31–40 (1985).
    Article CAS Google Scholar
  19. Messing, J. Meth. Enzym. 101, 20–78 (1983).
    Article CAS Google Scholar
  20. Biggin, M. D., Gibson, T. J. & Hong, G. F. Proc. natn. Acad. Sci. U.S.A. 80, 3963–3965 (1983).
    Article ADS CAS Google Scholar

Download references

Author information

Author notes

  1. Hee-Sup Shin
    Present address: Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
  2. F. Rob Jackson
    Present address: Worcester Foundation for Experimental Biology, 222 Maple Ave, Shrewsbury, Massachusetts, 01545, USA

Authors and Affiliations

  1. Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
    Hee-Sup Shin & Brian T. Clark
  2. The Rockefeller University, New York, New York, 10021, USA
    Thaddeus A. Bargiello & Michael W. Young
  3. Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
    F. Rob Jackson

Authors

  1. Hee-Sup Shin
  2. Thaddeus A. Bargiello
  3. Brian T. Clark
  4. F. Rob Jackson
  5. Michael W. Young

Rights and permissions

About this article

Cite this article

Shin, HS., Bargiello, T., Clark, B. et al. An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates.Nature 317, 445–448 (1985). https://doi.org/10.1038/317445a0

Download citation

This article is cited by