Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I (original) (raw)

Nature volume 322, pages 754–756 (1986)Cite this article

Abstract

Eukaryotic cells are dependent on their ability to translocate membraneous elements about the cytoplasm. In many cells long translocations of organelles are associated with microtubules1–3. In other cases, such as the rapid cytoplasmic streaming in some algae, organelles appear to be propelled along actin filaments4. It has been assumed, but not proven, that myosin produces these movements. We have tested vesicles from another eukaryotic cell for their ability to move on the exposed actin bundles of _Nitella_5 as an indiction that actin-based organelle movements may be a general property of cells. We found that organelles from Acanthamoeba castellanii can move along Nitella actin filaments. Here, we report two different experiments indicating that the single-headed non-polymerizable myosin isozyme myosin-I (ref. 6) is responsible for this organelle motility. First, monoclonal antibodies to myosin-I inhibit movement, but antibodies that inhibit double-headed myosin-II do not. Second, ∼20% of the myosin-I in homogenates co-migrates with motile vesicles during Percoll density-gradient ultracentrifugation. This is the first indication of a role for myosin-I within the cell and supports the suggestion of Albanesi _et al._7 that myosin-I moves vesicles in this way.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Schliwa, M. Cell Muscle Motil. 5, 1–82 (1984).
    Article CAS Google Scholar
  2. Schnapp, B. J., Vale, R. D., Sheetz, M. P. & Reese, T. S. Cell 40, 455–462 (1985).
    Article CAS Google Scholar
  3. Allen, R. D. et al. J. Cell Biol. 100, 1736–1752 (1985).
    Article CAS Google Scholar
  4. Kachar, B. Science 227, 1355–1357 (1985).
    Article ADS CAS Google Scholar
  5. Sheetz, M. P. & Spudich, J. A. Nature 303, 31–35 (1983).
    Article ADS CAS Google Scholar
  6. Pollard, T. D. & Korn, E. D. J. biol. Chem. 248, 4682–4690 (1973).
    CAS Google Scholar
  7. Albanesi, J. P. et al. J. biol. Chem. 260, 8649–8652 (1985).
    CAS PubMed Google Scholar
  8. Kamiya, N. & Kuroda, K. Bot. Mag. 69, 544–554 (1956).
    Article Google Scholar
  9. Chen, J. C. W. & Kamiya, N. Cell Struct. Funct. 1, 1–9 (1975).
    Article CAS Google Scholar
  10. Maruta, H. & Korn, E. D. J. biol Chem. 252, 6501–6509 (1977).
    CAS PubMed Google Scholar
  11. Pollard, T. D., Stafford, W. F. & Porter, M. E. J. biol. Chem. 253, 4798–4808 (1978).
    CAS Google Scholar
  12. Hagen, S. C., Kiehart, D. P., Kaiser, D. A. & Pollard, T. D. J. Cell Biol. (in the press).
  13. Kiehart, D. P. & Pollard, T. D. J. Cell Biol. 99, 1024–1033 (1984).
    Article CAS Google Scholar
  14. Kiehart, D. P., Kaiser, D. & Pollard, T. P. J. Cell Biol. 99, 1002–1014 (1984).
    Article CAS Google Scholar
  15. Gadasi, H. & Korn, E. D. Nature 286, 452–456 (1980).
    Article ADS CAS Google Scholar
  16. Cote, G. P., Albanesi, J. P., Ueno, T., Hammer, J. A. & Korn, E. D. J. biol. Chem. 260, 4543–4546 (1985).
    CAS PubMed Google Scholar
  17. Collins, J. H. & Borysenko, C. W. J. biol. Chem. 259, 14128–14135 (1984).
    CAS PubMed Google Scholar
  18. Edds, K. T. J. Cell Biol. 66, 145–155 (1975).
    Article CAS Google Scholar
  19. Bradley, T. J. & Satir, P. J. supramolec. Struct. 12, 165–175 (1979).
    Article CAS Google Scholar
  20. Isenberg, G., Schubert, P. & Kreutzberg, G. W. Brain Res. 194, 588–593 (1980).
    Article CAS Google Scholar
  21. Goldberg, D. J., Harris, D. A., Lubit, B. W. & Schwartz, J. H. Proc. natn. Acad. Sci. U.S.A 77, 7448–7452 (1980).
    Article ADS CAS Google Scholar
  22. Brady, S. T., Lasek, R. J., Allen, R. D., Yin, H. L. & Stossel, T. P. Nature 310, 56–58 (1984).
    Article ADS CAS Google Scholar
  23. Margel, S., Beitler, U. & Ofarim, M. J. Cell Sci. 56, 157–175 (1982).
    CAS PubMed Google Scholar
  24. Laemmli, U. K. Nature 229, 680–685 (1970).
    Article ADS Google Scholar
  25. Towbin, H., Staehlin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A 76, 4350–4354 (1979).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland, 21205, USA
    Richard J. Adams & Thomas D. Pollard

Authors

  1. Richard J. Adams
    You can also search for this author inPubMed Google Scholar
  2. Thomas D. Pollard
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Adams, R., Pollard, T. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I.Nature 322, 754–756 (1986). https://doi.org/10.1038/322754a0

Download citation

This article is cited by