Unusual intron in the immunoglobulin domain of the newly isolated murine CD4 (L3T4) gene (original) (raw)

Nature volume 325, pages 453–455 (1987)Cite this article

Abstract

The T-cell surface glycoprotein, CD4, is expressed predominantly on helper T cells and is thought to play a major role in cell–cell interactions1–5. Monoclonal antibodies against CD4 have been shown to block numerous T-cell functions1,3,4; moreover, recent results suggest that the CD4 molecule may be involved in transmembrane signal transduction6,7. The human CD4 glycoprotein has also been shown to form at least part of the receptor for the AIDS virus, HIV-1 (refs 8–10). Elucidation of the functions of CD4 will be facilitated by the ability to manipulate the protein by genetic means. Because the mouse system is well suited for a variety of functional studies, we have isolated, sequenced and expressed cDNA clones encoding the murine CD4 (L3T4) glycoprotein. Comparison of the mouse and human CD4 sequences reveals striking evolutionary conservation of the cytoplasmic domain, suggesting that this region is essential for CD4 function. In addition, both the human and mouse CD4 gene contain a large intron in the coding region of the _V_-like domain. As no other members of the immunoglobulin gene superf amily have been shown to contain similarly placed introns, this finding may have important implications regarding the evolution of this gene family in particular and of introns in general.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Webb, M., Mason, D. W. & Williams, A. F. Nature 282, 841–843 (1979).
    Article ADS CAS PubMed Google Scholar
  2. Reinherz, E. L. & Schlossman, S. F. Cell 19, 821–827 (1980).
    Article CAS PubMed Google Scholar
  3. Krensky, A. M. et al. Proc. natn. Acad. Sci. U.S.A. 79, 2365–2369 (1982).
    Article ADS CAS Google Scholar
  4. Swain, S. L., Dialynas, D., Fitch, F. W. & English, M. J. Immun. 132, 1118–1123 (1984).
    CAS PubMed Google Scholar
  5. Marrack, P. et al. J. exp. Med. 158, 1077–1091 (1983).
    Article CAS PubMed Google Scholar
  6. Wassmer, P., Chan, C., Logdberg, L. & Shevach, E. M. J. Immun. 135, 2237–2242 (1985).
    CAS PubMed Google Scholar
  7. Bank, I. & Chess, L. J. exp. Med. 162, 1294–1303 (1985).
    Article CAS PubMed Google Scholar
  8. Dalgleish, A. et al. Nature 312, 763–767 (1984).
    Article ADS CAS PubMed Google Scholar
  9. Klatzmann, D. et al. Nature 312, 767–768 (1984).
    Article ADS CAS PubMed Google Scholar
  10. McDougal, J. S. et al. Science 231, 382–385 (1986).
    Article ADS CAS PubMed Google Scholar
  11. Hiraki, D. D. et al. J. Immun. 136, 4291–4296 (1986).
    CAS PubMed Google Scholar
  12. Maddon, P. J. et al. Cell 42, 93–104 (1985).
    Article CAS PubMed Google Scholar
  13. Littman, D. R. et al. Cell 40, 237–246 (1985).
    Article CAS PubMed Google Scholar
  14. Classon, B. J., Tsagaratos, J., McKenzie, I. F. C. & Walker, I. D. Proc. natn. Acad. Sci. U.S.A. 83, 4499–4503 (1986).
    Article ADS CAS Google Scholar
  15. Hood, L., Kronenberg, M. & Hunkapiller, T. Cell 40, 225–229 (1985).
    Article CAS PubMed Google Scholar
  16. Doolittle, R. Nature 272, 581–582 (1978).
    Article ADS Google Scholar
  17. Gilbert, W. Nature 271, 501 (1978).
    Article ADS CAS PubMed Google Scholar
  18. Marchionni, M. & Gilbert, W. Cell 46, 133–141 (1986).
    Article CAS PubMed Google Scholar
  19. McKnight, G. L., O'Hara, P. J. & Parker, M. L. Cell 46, 143–147 (1986).
    Article CAS PubMed Google Scholar
  20. Amzel, L. M. & Poljak, R. J. A. Rev. Immun. 48, 961–997 (1979).
    CAS Google Scholar
  21. Go, M. Proc. natn. Acad. Sci. U.S.A. 80, 1964–1968 (1983).
    Article ADS CAS Google Scholar
  22. Williams, A. F. Immun. Today 5, 219–221.
  23. Swain, S. L. Proc. natn. Acad. Sci. U.S.A. 78, 7101–7105 (1981).
    Article ADS CAS Google Scholar
  24. Greenstein, J. L., Kappler, J., Marrack, P., & Burakoff, S. J. J. exp. Med. 159, 1213–1224 (1984).
    Article CAS PubMed Google Scholar
  25. Biddison, W. E., Rao, P. E., Talle, M. A., Goldstein, G. & Shaw, S. J. J. exp. Med. 159, 783–797 (1984).
    Article CAS PubMed Google Scholar
  26. Sanger, F., Nicklen, S. & Coulson, A. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
    Article ADS CAS Google Scholar
  27. Classon, B. J. et al. Immunogenetics 23, 129–132.
  28. Altenburger, W., Steinmetz, M. & Zachau, H. G. Nature 287, 603–607 (1980).
    Article ADS CAS PubMed Google Scholar
  29. Chien, Y. et al. Nature 312, 31–35 (1984).
    Article ADS CAS PubMed Google Scholar
  30. Maniatis, T. et al. Cell 15, 687–701 (1978).
    Article CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Microbiology and Immunology, University of California, San Francisco, California, 94143, USA
    Dan R. Littman & Sonya N. Gettner

Authors

  1. Dan R. Littman
    You can also search for this author inPubMed Google Scholar
  2. Sonya N. Gettner
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Littman, D., Gettner, S. Unusual intron in the immunoglobulin domain of the newly isolated murine CD4 (L3T4) gene.Nature 325, 453–455 (1987). https://doi.org/10.1038/325453a0

Download citation

This article is cited by