Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons (original) (raw)

Nature volume 325, pages 617–620 (1987)Cite this article

Abstract

In the development of the mammalian telencephalon, the genesis of neurons destined for the various layers of the cerebral cortex is preceded by the generation of a population of cells that comes to reside in the subplate and marginal zones1 (see ref. 2 for nomenclature). In the cat, these cells are present in large numbers during development, when their location is correlated with the arrival and accumulation of ingrowing axonal systems3–6 and with synapses7–12. However, as the brain matures, the cells disappear and the white matter and layer 1 of the adult emerge1,13,14. Their disappearance occurs in concert with the invasion of the cortical plate by the axonal systems and with the elimination of the synapses from the subplate1,4,7,9,12. Here we report that the subplate cells have properties typical of mature neurons. They have the ultra-structural appearance of neurons and receive synaptic contacts. They also have long projections and are immunoreactive for MAP2 (microtubule associated protein 2). Further, subpopulations are immunoreactive for one of several neuropeptides. These observations suggest that during the fetal and early postnatal development of the mammalian telencephalon the subplate cells function as neurons in synaptic circuitry that disappears by adulthood.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Luskin, M. B. & Shatz, C. J. J. Neurosci 5, 1062–1075 (1985).
    Article CAS Google Scholar
  2. Sidman, R. L. & Rakic, P. Brain Res. 62, 1–35 (1973).
    Article CAS Google Scholar
  3. Luskin, M. B. & Shatz, C. J. Soc. Neurosci. Abs. 10, 1079 (1984).
    Google Scholar
  4. Shatz, C. J. & Luskin, M. B. J. Neurosci 6, 3655–3668 (1986).
    Article CAS Google Scholar
  5. Rakic, P. Phil. Trans. R. Soc. B278, 245–260 (1977).
    Article ADS Google Scholar
  6. Lund, R. D. & Mustari, M. J. J. comp. Neurol. 173, 289–306 (1977).
    Article CAS Google Scholar
  7. Molliver, M. E., Kostovic, I. & Van Der Loos, H. Brain Res. 50, 403–407 (1973).
    Article CAS Google Scholar
  8. Kostovic, I. & Molliver, M. E. Anat. Rec. 178, 395 (1974).
    Google Scholar
  9. Cragg, B. G. J. comp. Neurol. 160, 147–166 (1975).
    Article CAS Google Scholar
  10. Blue, M. E. & Parnavelas, J. G. J. Neurocytol. 12, 599–616 (1983).
    Article CAS Google Scholar
  11. Blue, M. E. & Parnavelas, J. G. J. Neurocytol. 12, 697–712 (1983).
    Article CAS Google Scholar
  12. Chun, J. J. M. & Shatz, C. J. Soc. Neurosci. Abstr. 9, 692 (1983).
    Google Scholar
  13. Kostovic, I. & Rakic, P. J. Neurocytol. 9, 219–242 (1980).
    Article CAS Google Scholar
  14. Parnavelas, J. G. & Edmunds, S. M. J. Neurocytol. 12, 863–871 (1983).
    Article CAS Google Scholar
  15. Luskin, M. B. & Shatz, C. J. J. comp. Neurol. 242, 611–631 (1985).
    Article CAS Google Scholar
  16. De Camilli, P., Miller, P. E., Navone, F., Theurkauf, W. E. & Vallee, R. B. Neuroscience 11, 819–846 (1984).
    Article Google Scholar
  17. Bernhardt, R., Huber, G. & Matus, A. J. Neurosci. 5, 977–991 (1985).
    Article CAS Google Scholar
  18. Laemle, L. K., Feldman, S. C. & Lichtenstein, E. Brain Res. 251, 365–370 (1982).
    Article CAS Google Scholar
  19. Somogyi, P. et al. J. Neurosci. 4, 2590–2603 (1984).
    Article CAS Google Scholar
  20. Hendry, S. H. C., Jones, E. G. & Emson, P. C. J. Neurosci. 4, 2497–2517 (1984).
    Article CAS Google Scholar
  21. Hendry, S. H. C. et al. Proc. natn. Acad. Sci. U.S.A. 81, 6526–6530 (1984).
    Article ADS CAS Google Scholar
  22. Chan-Palay, V., Allen, Y. S., Lang, W., Haesler, U. & Polak, J. M. J. comp. Neurol. 238, 382–389 (1985).
    Article CAS Google Scholar
  23. Hickey, T. L., Whikehart, D. R., Jackson, C. A., Hitchcock, P. F. & Peduzzi J. D. J. Neurosci Methods 8, 139–147 (1983).
    Article CAS Google Scholar
  24. Raedler, E. & Raedler, A. Anat. Embryol. 154, 267–284 (1978).
    Article CAS Google Scholar
  25. Caviness, V. S. Jr Devl Brain Res. 4, 293–302 (1982).
    Article Google Scholar
  26. Ramon Y Cajal, S. Histologie du System Nerveux de l'Homme et des Vertebres Vol. 2 (Maloine, Paris, 1911).
    Google Scholar
  27. Bradford, R., Parnavelas, J. G. & Lieberman, A. R. J. comp. Neurol. 176, 121–132 (1977).
    Article CAS Google Scholar
  28. Marin-Padilla, M. Z. Anat. EntwGesch. 134, 125–142 (1971).
    Article Google Scholar
  29. Marin-Padilla, M. Z. Anat. EntwGesch. 136, 125–142 (1972).
    Article CAS Google Scholar
  30. Crandal, J. E., Jacobson, M. & Kosik, K. S. Devl Brain Res. 28, 127–133 (1986).
    Article Google Scholar
  31. Kostovic, I. & Fucic, A. Soc. Neurosci. Abstr. 11, 352 (1985).
    Google Scholar
  32. Wise, S. P. & Jones, E. G. J. comp. Neurol. 178, 187–208 (1978).
    Article CAS Google Scholar
  33. Innocenti, G. M. Science 212, 824–827 (1981).
    Article ADS CAS Google Scholar
  34. McLean, I. W. & Nakane, P. K. J. Histochem. Cytochem. 22, 1077–1083 (1974).
    Article CAS Google Scholar
  35. Adams, J. C. J. Histochem. Cytochem. 29, 775 (1981).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Neurobiology, Stanford University School of Medicine, Stanford, California, 94305, USA
    J. J. M. Chun, M. J. Nakamura & C. J. Shatz

Authors

  1. J. J. M. Chun
    You can also search for this author inPubMed Google Scholar
  2. M. J. Nakamura
    You can also search for this author inPubMed Google Scholar
  3. C. J. Shatz
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Chun, J., Nakamura , M. & Shatz, C. Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons.Nature 325, 617–620 (1987). https://doi.org/10.1038/325617a0

Download citation