psbA genes indicate common ancestry of prochlorophytes and chloroplasts (original) (raw)

Nature volume 337, pages 382–385 (1989)Cite this article

A Corrigendum to this article was published on 01 June 1989

Abstract

It has long been suspected that chloroplasts evolved after an endosymbiotic event involving a photosynthetic prokaryote, presumably a cyanobacterium, and a eukaryotic organism. Recent studies have provided strong evidence about the cyanobacterial nature of chloroplasts1. Since the discovery of prochlorophytes2, oxygen-evolving photosynthetic prokaryotes containing chlorophyll a and chlorophyll b and lacking phycobiliproteins, there has been speculation that these represent evolutionary intermediates between cyanobacteria and chloroplasts3. Prochloron sp., the first described prochlorophyte, proved difficult to work with because it is an obligate symbiont of marine ascidians3.Prochlorothrix hollandica, a recently isolated, freshwater filamentous prochlorophyte, is easily maintained in the laboratory3,4. Overall pigment composition and thylakoid membrane structure of P. hollandica suggest it has intermediate characteristics between cyanobacteria and the chloroplasts of higher plants3. The P. hollandica psbA genes, which encode the photosystem II thylakoid protein Dl, were cloned and sequenced and the sequences compared to those reported for cyanobacteria, a green alga, a liverwort, and several higher plants. The two psbA genes present in P. hollandica encode an identical amino-acid sequence. As in all chloroplast psbA genes, there is a seven amino-acid gap near the C terminus of the derived protein relative to the protein predicted by cyanobacterial genes5, suggesting that P. hollandica is part of the lineage that led to chloroplasts after a divergence from cyanobacteria. This hypothesis is also supported by phylogenetic analysis of derived Dl amino-acid sequences from psbA genes of thirteen taxa on the basis of parsimony.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Giovannoni, S. J. et al. J. Bact. 170, 3584–3592 (1988).
    Article CAS Google Scholar
  2. Lewin, R. A. Nature 261, 697–698 (1967).
    Article ADS Google Scholar
  3. Burger-Wiersma, T., Veenhuis, M., Korthals, H. J., Van de Wiel, C. C. M. & Mur, L. R. Nature 320, 262–264 (1986).
    Article ADS CAS Google Scholar
  4. Bullerjahn, G. S., Matthijs, H. C. P., Mur, L. R. & Sherman, L. A. Eur. J. Biochem. 168, 295–300 (1987).
    Article CAS Google Scholar
  5. Curtis, S. & Haselkorn, R. Pl. molec. Biol. 3, 249–258 (1984).
    Article CAS Google Scholar
  6. Golden, S. S., Bruslan, J. & Haselkorn, R. EMBO J. 5, 2789–2798 (1986).
    Article CAS Google Scholar
  7. Palmer, J. A. Rev. Genet. 19, 325–354 (1985).
    Article CAS Google Scholar
  8. Meyer, T. E., Cusanovich, M. A. & Kamen, M. D. Proc. natn. Acad. Sci. U.S.A. 83, 217–220 (1986).
    Article ADS CAS Google Scholar
  9. Maxwell, E. J., Liu, J. & Shively, J. M. J. molec. Evol. 23, 300–304 (1986).
    Article ADS CAS Google Scholar
  10. Swofford, D. L. PAUP User's Manual Version 2.4. (Illinois Natural History Survey, Champaign, Illinois, 1985).
    Google Scholar
  11. Ochman, H. & Wilson, A. C. J. molec. Evol. 26, 74–86 (1987).
    Article ADS CAS Google Scholar
  12. Wilson, A. C., Ochman, H. & Prager, E. M. Trends Genet. 3, 241–247 (1987).
    Article CAS Google Scholar
  13. Chisholm, S. W. et al. Nature 334, 340–343 (1988).
    Article ADS Google Scholar
  14. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).
    Google Scholar
  15. Mulligan, B., Schultes, N., Chin, L. & Bogorad, L. Proc. natn. Acad. Sci. U.S.A. 81, 2693–2697 (1984).
    Article ADS CAS Google Scholar
  16. Osiewacz, H. D. & McIntosh, L. Nucleic Acid Res. 15, 10585 (1987).
    Article CAS Google Scholar
  17. Erickson, J. M., Rahire, M. & Rochaix, J.-D. EMBO J. 3, 2753–2762 (1984).
    Article CAS Google Scholar
  18. Ohyama, K. et al. Nature 322, 572–574 (1986).
    Article ADS CAS Google Scholar
  19. Zurawski, G., Bohnert, H. J., Whitfield, P. R. & Bottomley, W. Proc. natn. Acad. Sci. U.S.A. 79, 7699–7703 (1982).
    Article ADS CAS Google Scholar
  20. Spielmann, A. & Stutz, E. Nucleic Acid Res. 11, 7157–7167 (1983).
    Article CAS Google Scholar
  21. Aldrich, J., Cherney, B. & Merlin, E. Nucleic Acid Res. 14, 9537 (1986).
    Article CAS Google Scholar
  22. Hirschberg, J. & McIntosh, L. Science 22, 1346–1349 (1983).
    Article ADS Google Scholar
  23. Shinozaki, K. et al. EMBO J. 5, 2043–2049 (1986).
    Article CAS Google Scholar
  24. Aldrich, J., Cherney, B., Merlin, E., Christopherson, L. A. & Williams, C. Nucleic Acid Res. 14, 9536 (1986).
    Article CAS Google Scholar
  25. Goloubinoff, P., Edelman, M. & Hallick, R. B. Nucleic Acid Res. 12, 9489–9496 (1984).
    Article CAS Google Scholar

Download references

Author information

Author notes

  1. S. S. Golden: To whom correspondence should be addressed.

Authors and Affiliations

  1. Department of Biology, Texas A & M University College Station, Texas, 77843, USA
    C. W. Morden & S. S. Golden

Authors

  1. C. W. Morden
    You can also search for this author inPubMed Google Scholar
  2. S. S. Golden
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Morden, C., Golden, S. psbA genes indicate common ancestry of prochlorophytes and chloroplasts.Nature 337, 382–385 (1989). https://doi.org/10.1038/337382a0

Download citation

This article is cited by