Programmed death of autoreactive thymocytes (original) (raw)

Nature volume 343, pages 642–644 (1990)Cite this article

Abstract

T LYMPHOCYTES bearing high-affinity T-cell receptors (TCR) for self-antigens are clonally deleted during thymus development1. Several recent studies1,4–10have identified variable domains of the β-chain of the TCR that are specifically deleted in vivo in mouse strains that express major histocompatibility complex class II molecules in addition to poorly defined self-antigens, including those encoded by the Mls-1 a Mls-2 a loci. Deletion of autoreactive cells in these systems occurs in the thymus, and antibody blocking experiments in vivo have implicated the phenotypically immature CD4+CD8+'cortical' subset as the target population for clonal deletion11,12. Similarly, studies with transgenic mice bearing autoreactive TCR have provided independent evidence that clonal deletion occurs at the CD4+CD8+ stage of development13. But none of these studies directly identified dying autoreactive cells, and the circumstances leading to deletion remain unclear. Here we report that neonatal thymus contains a significant popula- tion of phenotypically mature CD4+CD8−cells bearing autoreactive TCR. When placed in short-term culture, a large proportion (60%) of these autoreactive cells die selectively. Furthermore, their death can be prevented by inhibitors of macromolecule (RNA and protein) synthesis, as is the case for glucocorticoid-induced death of thymocytes2,3. These data indicate that physiological clonal deletion of autoreactive cells involves 'programmed' cell death, and that it can occur in cells with a mature (CD4+CD8−) surface phenotype.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Kappler, J. W., Roehm, N. & Marrack, P. Cell 49, 263–271 (1987).
    Article CAS PubMed Google Scholar
  2. Wyllie, A. H., Morris, R. G., Smith, A. L. & Dunlop, D. J. Path. 142, 67–77 (1984).
    Article CAS PubMed Google Scholar
  3. Cohen, J. J. & Duke, R. C. J. Immun. 132, 38–42 (1984).
    CAS PubMed Google Scholar
  4. Kappler, J. W., Staerz, U., White, J. & Marrack, P. Nature 332, 35–40 (1988).
    Article ADS CAS PubMed Google Scholar
  5. MacDonald, H. R. et al. Nature 332, 40–45 (1988).
    Article ADS CAS PubMed Google Scholar
  6. Pullen, A. M., Marrack, P. & Kappler, J. W. Nature 335, 796–801 (1988).
    Article ADS CAS PubMed Google Scholar
  7. Fry, A. M. & Matis, L. A. Nature 335, 830–832 (1988).
    Article ADS CAS PubMed Google Scholar
  8. Tomonari, K. & Lovering, E. Immunogenetics 28, 445–451 (1988).
    Article CAS PubMed Google Scholar
  9. Bill, J., Kanagawa, O., Woodland, D. L. & Palmer, E. J. exp. Med. 169, 1405–1419 (1989).
    Article CAS PubMed Google Scholar
  10. Kanagawa, O., Palmer, E. & Bill, J. Cell Immun. 119, 412–426 (1989).
    Article CAS Google Scholar
  11. Fowlkes, B. J., Schwartz, R. H. & Pardoll, D. M. Nature 334, 620–623 (1988).
    Article ADS CAS PubMed Google Scholar
  12. MacDonald, H. R., Hengartner, H. & Pedrazzini, T. Nature 335, 174–176 (1988).
    Article ADS CAS PubMed Google Scholar
  13. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Nature 333, 742–746 (1988).
    Article ADS CAS PubMed Google Scholar
  14. Schneider, R. et al. J. exp. Med. 169, 2149–2158 (1989).
    Article CAS PubMed Google Scholar
  15. Wyllie, A. H., Kerr, J. F. R. & Currie, A. R. Int. Rev. Cytol. 68, 251–305 (1980).
    Article CAS PubMed Google Scholar
  16. Shi, Y., Sahai, B. M. & Green, D. R. Nature 339, 625–626 (1989).
    Article ADS CAS PubMed Google Scholar
  17. Smith, C. A., Williams, G. T., Kingston, R., Jenkinson, E. J. & Owen, J. J. T. Nature 337, 181–184 (1989).
    Article ADS CAS PubMed Google Scholar
  18. Russell, J. H. Immunol. Rev. 72, 97–118 (1983).
    Article CAS PubMed Google Scholar
  19. McConkey, D. J. et al. Archs Biochem. Biophys. 269, 365–370 (1989).
    Article CAS Google Scholar
  20. McConkey, D. J., Hartzell, P., Nicotera, P. & Orrenius, S. FASEB J. 3, 1843–1849 (1989).
    Article CAS PubMed Google Scholar
  21. Ceredig, R., Dialynas, D. P., Fitch, F. W. & MacDonald, H. R. J. exp. Med. 158, 1654–1671 (1983).
    Article CAS PubMed Google Scholar
  22. Qin, S., Cobbold, S., Benjamin, R. & Waldmann, H. J. exp. Med. 169, 779–794 (1989).
    Article CAS PubMed Google Scholar
  23. Rammensee, H.-G., Kroschewski, R. & Frangoulis, B. Nature 339, 541–544 (1989).
    Article ADS CAS PubMed Google Scholar
  24. Smith, H., Chen, I.-M., Kubo, R. & Tung, K. S. K. Science 245, 749–752 (1989).
    Article ADS CAS PubMed Google Scholar
  25. Festenstein, H. & Berumen, L. Transplantation 37, 322–324 (1984).
    Article CAS PubMed Google Scholar
  26. Payne, J. et al. Proc. natn. Acad. Sci. U.S.A. 85, 7695–7698 (1988).
    Article ADS CAS Google Scholar
  27. Haskins, K. et al. J. exp. Med. 160, 452–471 (1984).
    Article CAS PubMed Google Scholar
  28. Pierres, A. et al. J. Immun. 132, 2775–2782 (1984).
    CAS PubMed Google Scholar
  29. MacDonald, H. R. & Zaech, P. Cytometry 3, 55–58 (1982).
    Article CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Ludwig Institute for Cancer Research, 1066, Epalinges, Switzerland
    H. Robson MacDonald & Rosemary K. Lees

Authors

  1. H. Robson MacDonald
    You can also search for this author inPubMed Google Scholar
  2. Rosemary K. Lees
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

MacDonald, H., Lees, R. Programmed death of autoreactive thymocytes.Nature 343, 642–644 (1990). https://doi.org/10.1038/343642a0

Download citation

This article is cited by