Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution (original) (raw)

References

  1. Tabor, S., Huber, H. E. & Richardson, C. C. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J. Biol. Chem. 262, 16212– 16223 (1987).
    CAS PubMed Google Scholar
  2. Modrich, P. & Richardson, C. C. Bacteriophage T7 deoxyribonucleic acid replication in vitro. A protein of Escherichia coli required for bacteriophage T7 DNA polymerase activity. J. Biol. Chem. 250, 5508–5514 (1975).
    CAS PubMed Google Scholar
  3. Debyser, Z., Tabor, S. & Richardson, C. C. Coordination of leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7. Cell 77 , 157–166 (1994).
    Article CAS Google Scholar
  4. Delarue, M., Poch, O., Tordo, N., Moras, D. & Argos, P. An attempt to unify the structure of polymerases. Protein Eng. 3, 461–467 (1990).
    Article CAS Google Scholar
  5. Braithwaite, D. K. & Ito, J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 21, 787–802 ( 1993).
    Article CAS Google Scholar
  6. Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H. & Kraut, J. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 264 , 1891–1903 (1994).
    Article ADS CAS Google Scholar
  7. Tabor, S. & Richardson, C. C. Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J. Biol. Chem. 264, 6447 –6458 (1989).
    CAS PubMed Google Scholar
  8. Steitz, T. A. DNA- and RNA-dependent DNA polymerases. Curr. Opin. Struct. Biol. 3, 31–38 (1993 ).
    Article CAS Google Scholar
  9. Polesky, A. H., Steitz, T. A., Grindley, N. D. & Joyce, C. M. Identificaiton of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J. Biol. Chem. 265, 14579–14591 ( 1990).
    CAS PubMed Google Scholar
  10. Polesky, A. H., Dahlberg, M. E., Benkovic, S. J., Grindley, N. D. & Joyce, C. M. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J. Biol. Chem. 267, 8417– 8428 (1992).
    CAS PubMed Google Scholar
  11. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313 , 762–766 (1985).
    Article ADS CAS Google Scholar
  12. Beese, L. S., Derbyshire, V. & Steitz, T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260, 352– 355 (1993).
    Article ADS CAS Google Scholar
  13. Korolev, S., Nayal, M., Barnes, W. M., Di Cera, E. & Waksman, G. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-Å resolution: structural basis for thermostability. Proc. Natl Acad. Sci. USA 92, 9264–9268 (1995).
    Article ADS CAS Google Scholar
  14. Kiefer, J. R. et al. Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure 5, 95–108 (1997).
    Article CAS Google Scholar
  15. Kim, Y. et al. Crystal structure of Thermus aquaticus DNA polymerase. Nature 376, 612–616 ( 1995).
    Article ADS CAS Google Scholar
  16. Eom, S. H., Wang, J. & Steitz, T. A. Structure of Taq polymerase with DNA at the polymerase active site. Nature 382, 278– 281 (1996).
    Article ADS CAS Google Scholar
  17. Sawaya, M. R., Prasad, R., Wilson, S. H., Kraut, J. & Pelletier, H. Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry 36, 11205– 11215 (1997).
    Article CAS Google Scholar
  18. Minnick, D. T., Astatke, M., Joyce, C. M. & Kunkel, T. A. Athumb subdomain mutant of the large fragment of Escherichia coli DNA polymerase I with reduced DNA binding affinity, processivity, and frameshift fidelity. J. Biol. Chem. 271, 24954– 24961 (1996).
    Article CAS Google Scholar
  19. Astatke, M., Grindley, N. D. & Joyce, C. M. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). J. Biol. Chem. 270, 1945–1954 ( 1995).
    Article CAS Google Scholar
  20. Burgers, P. M. & Eckstein, F. Astudy of the mechanism of DNA polymerase I from Escherichia coli with diastereomeric phosphorothioate analogs of deoxyadenosine triphosphate. J. Biol. Chem. 254, 6889–6893 ( 1979).
    CAS PubMed Google Scholar
  21. Beese, L. S. & Steitz, T. A. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10, 25– 33 (1991).
    Article CAS Google Scholar
  22. Kaushik, N., Pandey, V. N. & Modak, M. J. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Biochemistry 35, 7256– 7266 (1996).
    Article CAS Google Scholar
  23. Joyce, C. M. Choosing the right sugar: how polymerases select a nucleotide substrate. Proc. Natl Acad. Sci. USA 94, 1619– 1622 (1997).
    Article ADS CAS Google Scholar
  24. Tabor, S. & Richardson, C. C. Asingle residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc. Natl Acad. Sci. USA 92, 6339–6343 ( 1995).
    Article ADS CAS Google Scholar
  25. Patel, S. S., Wong, I. & Johnson, K. A. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30, 511– 525 (1991).
    Article CAS Google Scholar
  26. Beese, L.. S., Friedman, J. M. & Steitz, T. A. Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry 32, 14095– 14101 (1993).
    Article CAS Google Scholar
  27. Bryant, F. R., Johnson, K. A., & Benkovic, S. J. Elementary steps in the DNA polymerase I reaction pathway. Biochemistry 22, 3537– 3546 (1983).
    Article CAS Google Scholar
  28. Wong, I., Patel, S. S. & Johnson, K. A. An induced-fit kinetic mechanism for DNA replcation fidelity: direct measurement by single-turnover kinetics. Biochemistry 30, 526–537 ( 1991).
    Article CAS Google Scholar
  29. Donlin, M. J., Patel, S. S. & Johnson, K. A. Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry 30, 538–546 (1991).
    Article CAS Google Scholar
  30. Seeman, N. C., Rosenberg, J. M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA 73, 804–808 (1976).
    Article ADS CAS Google Scholar
  31. Hunter, W. N., Brown, T., Anand, N. N. & Kennard, O. Structure of adenine·cytosine base pair in DNA and its implications for mismatch repair. Nature 320, 552–555 ( 1986).
    Article ADS CAS Google Scholar
  32. Kong, X. P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425–437 (1992).
    Article CAS Google Scholar
  33. Himawan, J. S. & Richardson, C. C. Amino acid residues critical for the interaction between bacteriophage T7 DNA polymerase and Escherichia coli thioredoxin. J. Biol. Chem. 271, 19999–20008 (1996).
    Article CAS Google Scholar
  34. Yang, X. M. & Richardson, C. C. Amino acid changes in a unique sequence of bacteriophage T7 DNA polymerase alter the processivity of nucleotide polymerization. J. Biol. Chem. 272, 6599 –6606 (1997).
    Article CAS Google Scholar
  35. Adler, S. & Modrich, P. T7-induced DNA polymerase. Requirement for thioredoxin sulfhydryl groups. J. Biol. Chem. 258 , 6956–6962 (1983).
    CAS PubMed Google Scholar
  36. Huber, H. E., Russel, M., Model, P. & Richardson, C. C. Interaction of mutant thioredoxins of Escherichia coli with the gene 5 protein of phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA polymerase activity. J. Biol. Chem. 261, 15006–15012 (1986).
    CAS PubMed Google Scholar
  37. Qin, J., Clore, G. M., Kennedy, W. M., Huth, J. R. & Gronenborn, A. M. Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B. Structure 3, 289–297 (1995).
    Article CAS Google Scholar
  38. Bedford, E., Tabor, S. & Richardson, C. C. The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I. Proc. Natl Acad. Sci. USA 94, 479– 484 (1997).
    Article ADS CAS Google Scholar
  39. Doublié, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).
    Article Google Scholar
  40. Carter, C. W. J in Crystallization of Nucleic Acids and Proteins: A Practical Approach (eds Ducruix, A. & Giegé, R.) 47– 71 (IRL Press, New York, (1992)).
    Google Scholar
  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326 ( 1997).
    Article CAS Google Scholar
  42. Rould, M. A. Screening for heavy-atom derivatives and obtaining accurate isomorphous differences. Methods Enzymol. 276, 461– 472 (1997).
    Article CAS Google Scholar
  43. Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A 46, 467–473 (1990).
    Article Google Scholar
  44. Bailey, S. The CCP4 Suite-programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).
    Article Google Scholar
  45. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110– 119 (1991).
    Article Google Scholar
  46. Brünger, A. T. XPLOR Version 3.1: A system for X-ray crystallography and NMR.(Yale University Press, New Haven, CT, (1992)).
  47. Laskowski, R. A., McArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK — a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283 –291 (1993).
    Article CAS Google Scholar
  48. Evans, S. V. SETOR: Hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134– 138 (1993).
    Article CAS Google Scholar
  49. Nicholls,, Charp, K. A. & Honig, B. Protein folding and association: insights from interfacial and thermodynamics properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).
    Article CAS Google Scholar
  50. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol 276, 505–524 ((1997)).
    Article Google Scholar

Download references