Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion (original) (raw)

References

  1. Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744–747 (1993).
    Article CAS Google Scholar
  2. Rizzuto, R., Bastianutto, C., Brini, M., Murgia, M. & Pozzan, T. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 126, 1183–1194 (1994).
    Article CAS Google Scholar
  3. Brini, M. et al. Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol. Biol. Cell 8, 129–143 (1997).
    Article CAS Google Scholar
  4. Robb-Gaspers, L. D. et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 17, 4987–5000 (1998).
    Article CAS Google Scholar
  5. Werth, J. L. & Thayer, S. A. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J. Neurosci. 14, 346–356 (1994).
    Article Google Scholar
  6. White, R. J. & Reynolds, I. J. Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurons. J. Physiol. (Lond.) 498, 31–47 (1997).
    Article CAS Google Scholar
  7. Park, Y. B., Herrington, J., Babcock, D. F. & Hille, B. Ca2+ clearance mechanisms in isolated rat adrenal chromaffin cells. J. Physiol. (Lond.) 492, 329–346 (1996).
    Article CAS Google Scholar
  8. Herrington, J., Park, Y. B., Babcock, D. F. & Hille, B. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron 16, 219–228 (1996).
    Article CAS Google Scholar
  9. Babcock, D. F., Herrington, J., Park, Y.-B. & Hille, B. Mitochondrial participation in the intracellular Ca2+ network. J. Cell. Biol. 136, 833–843 (1997).
    Article CAS Google Scholar
  10. Xu, T., Naraghi, M., Kang, H. & Neher, E. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73, 532–545 (1997).
    Article CAS Google Scholar
  11. Duchen, M. R. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. (Lond.) 516, 1–17 (1999).
    Article CAS Google Scholar
  12. Schinder, A. F., Olson, E. C., Spitzer, N. C. & Montal, M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16, 6125–6133 (1996).
    Article CAS Google Scholar
  13. Di Lisa, F. & Bernardi, P. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol. Cell Biochem. 184, 379–391 (1998).
    Article CAS Google Scholar
  14. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).
    Article CAS Google Scholar
  15. Montero, M. et al. Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J. 14, 5467–5475 (1995).
    Article CAS Google Scholar
  16. Montero, M., Barrero, M. J. & Alvarez, J. [Ca2+] microdomains control agonist-induced Ca2+ release in intact HeLa cells. FASEB J. 11, 881–885 (1997).
    Article CAS Google Scholar
  17. Barrero, M. J., Montero, M. & Alvarez, J. Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells. J. Biol. Chem. 272, 27694–27699 (1997).
    Article CAS Google Scholar
  18. Montero, M. et al. Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+] subcompartments in intact HeLa cells. J. Cell Biol. 139, 601–611 (1997).
    Article CAS Google Scholar
  19. Alonso, M. T. et al. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J. Cell Biol. 144, 241–254 (1999).
    Article CAS Google Scholar
  20. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).
    Article CAS Google Scholar
  21. Csordás, G., Thomas, A. P. & Hajnóczky, G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J. 18, 96–108 (1999).
    Article Google Scholar
  22. Uceda, G., García, A. G., Guantes, J. M., Michelena, P. & Montiel, C. Effects of Ca2+ channel antagonist subtypes on mitochondrial transport. Eur. J. Pharmacol. 289, 73–80 (1995).
    Article CAS Google Scholar
  23. von Rüden, L. & Neher, E. A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262, 1061–1065 (1993).
    Article Google Scholar
  24. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).
    Article CAS Google Scholar
  25. Alonso, M. T. et al. Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium 24, 87–96 (1998).
    Article CAS Google Scholar
  26. Borges, R., Sala, F. & García, A. G. Continuous monitoring of catecholamine release from perfused cat adrenals. J. Neurosci. Meth. 16, 1986).

Download references