Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating (original) (raw)

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).
    Article CAS Google Scholar
  2. Adams, A. E., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111, 131–142 (1990).
    Article CAS Google Scholar
  3. Bähler, J. & Peter, M. in Frontiers in Molecular Biology: Cell Polarity (ed. Drubin, D. G.) (Oxford Univ. Press, Oxford, in the press).
  4. Johnson, D. I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54– 105 (1999).
    CAS PubMed PubMed Central Google Scholar
  5. Chenevert, J., Corrado, K., Bender, A., Pringle, J. & Herskowitz, I. A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature 356, 77–79 (1992).
    Article CAS Google Scholar
  6. Peterson, J., Zheng, Y., Bender, L., Myers, A., Cerione, R. & Bender, A. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J. Cell Biol. 127, 1395–1406 (1994).
    Article CAS Google Scholar
  7. Leeuw, T. et al. Pheromone response in yeast: association of Bem1p with proteins of the MAP kinase cascade and actin. Science 270, 1210–1213 (1995).
    Article CAS Google Scholar
  8. Nern, A. & Arkowitz, R. A. A Cdc24-Far1-G beta gamma protein complex required for yeast orientation during mating. J. Cell Biol. 144, 1187–1202 ( 1999).
    Article CAS Google Scholar
  9. Toenjes, K. A., Sawyer, M. M. & Johnson, D. I. The guanine-nucleotide-exchange factor Cdc24 is targeted to the nucleus and polarized growth sites. Curr. Biol. 9, 1183–1186 (1999).
    Article CAS Google Scholar
  10. Chant, J. & Stowers, L. GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81 , 1–4 (1995).
    Article CAS Google Scholar
  11. Segall, J. E. Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl Acad. Sci. USA 90, 8332– 8336 (1993).
    Article CAS Google Scholar
  12. Sprague, G. F. & Thorner, J. W. in The Molecular and Cellular Biology of the Yeast Saccharomyces(eds Jones, E.W., Pringle, J.R. & Broach, J.R.) 657–744 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1992).
    Google Scholar
  13. Herskowitz, I. MAP kinase pathways in yeast: for mating and more. Cell 80, 187–197 (1995).
    Article CAS Google Scholar
  14. Valtz, N., Peter, M. & Herskowitz, I. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J. Cell Biol. 131, 863–873 (1995).
    Article CAS Google Scholar
  15. Nern, A. & Arkowitz, R. A. A GTP-exchange factor required for cell orientation. Nature 391, 195– 198 (1998).
    Article CAS Google Scholar
  16. Butty, A. C., Pryciak, P. M., Huang, L. S., Herskowitz, I. & Peter, M. The role of Far1 in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science 282, 1511–1516 ( 1998).
    Article CAS Google Scholar
  17. Lew, D. J. & Reed, S. I. Cell cycle control of morphogenesis in budding yeast. Curr. Opin. Genet. Dev. 5, 17–23 (1995).
    Article CAS Google Scholar
  18. McKinney, J. D. & Cross, F. R. FAR1 and the G1 phase specificity of cell cycle arrest by mating factor in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 2509 –2516 (1995).
    Article CAS Google Scholar
  19. Henchoz, S., Chi, Y., Catarin, B., Herskowitz, I., Deshaies, R. J. & Peter, M. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1 in budding yeast. Genes Dev. 11, 3046–3060 (1997).
    Article CAS Google Scholar
  20. McKinney, J. D., Chang, F., Heintz, N. & Cross, F. R. Negative regulation of FAR1 at the Start of the yeast cell cycle. Genes Dev. 7, 833–843 (1993).
    Article CAS Google Scholar
  21. Chang, F. & Herskowitz, I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63, 999– 1011 (1990).
    Article CAS Google Scholar
  22. Blondel, M., Alepuz, P. M., Huang, L. S., Shaham, S., Ammerer, G. & Peter, M. Nuclear export of Far1 in response to pheromones requires the export receptor Msn5/Ste21p. Genes Dev. 13, 2284–2300 (1999).
    Article CAS Google Scholar
  23. Lew, D. J. & Reed, S. I. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120, 1305–1320 (1993).
    Article CAS Google Scholar
  24. Peter, M. & Herskowitz, I. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265, 1228–1231 (1994).
    Article CAS Google Scholar
  25. Chant, J. Generation of cell polarity in yeast. Curr. Opin. Cell Biol. 8, 557–565 (1996).
    Article CAS Google Scholar
  26. Chenevert, J. Cell polarization directed by extracellular cues in yeast. Mol. Biol. Cell 5, 1169–1175 (1994).
    Article CAS Google Scholar
  27. Arkowitz, R. A. Responding to attraction: chemotaxis and chemotropism in Dictyostelium and yeast. Trends Cell Biol. 9, 20– 27 (1999).
    Article CAS Google Scholar
  28. Bender, A. & Pringle, J. R. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl Acad. Sci. USA 86, 9976–9980 (1989).
    Article CAS Google Scholar
  29. Park, H. O., Bi, E., Pringle, J. R. & Herskowitz, I. Two active states of the Ras-related Bud1/Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc. Natl Acad. Sci. USA 94, 4463–4468 (1997).
    Article CAS Google Scholar
  30. Mahanty, S. K., Wang, Y. M., Farley, F. W. & Elion, E. A. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell 98, 501–512 ( 1999).
    Article CAS Google Scholar
  31. Alepuz, P. M., Matheos, D., Cunningham, K. W. & Estruch, F. The Saccharomyces cerevisiae RanGTP binding protein Msn5 is involved in different signal transduction pathways. Genetics 153, 1219–1231 (1999).
    CAS PubMed PubMed Central Google Scholar
  32. Dorer, R., Pryciak, P. M. & Hartwell, L. H. Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients. J. Cell Biol. 131, 845–861 (1995).
    Google Scholar
  33. Kaffmann, A. & O"Shea, E. K. Regulation of nuclear localization: A key to a door. Annu. Rev. Cell Dev. Biol (in the press).
  34. Hood, J. K. & Silver, P. A. In or out? Regulating nuclear transport. Curr. Opin. Cell Biol. 11, 241 –247 (1999).
    Article CAS Google Scholar
  35. Beg, A. A., Ruben, S. M., Scheinman, R. I., Haskill, S., Rosen, C. A. & Baldwin, A. S., Jr I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention . Genes Dev. 6, 1899–1913 (1992).
    Article CAS Google Scholar
  36. Henkel, T., Zabel, U., van Zee, K., Muller, J. M., Fanning, E. & Baeuerle, P. A. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 68, 1121–1133 (1992).
    Article CAS Google Scholar
  37. Arenzana-Seisdedos, F. et al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J. Cell Sci. 110, 369–378 (1997).
    CAS PubMed Google Scholar
  38. Gaits, F., Degols, G., Shiozaki, K. & Russell, P. Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev. 12, 1464–1473 ( 1998).
    Article CAS Google Scholar
  39. Chen, C. R., Li, Y. C., Chen, J., Hou, M. C., Papadaki, P. & Chang, E. C. Moe1, a conserved protein in Schizosaccharomyces pombe, interacts with a Ras effector, Scd1, to affect proper spindle formation. Proc. Natl Acad. Sci. USA 96, 517–522 (1999).
    Article CAS Google Scholar
  40. Bertagnolo, V., Marchisio, M., Volinia, S., Caramelli, E. & Capitani, S. Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett. 441, 480–484 (1998).
    Article CAS Google Scholar
  41. Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular Biology (Academic, San Diego, 1991).
    Google Scholar
  42. Valtz, N. & Peter, M. Functional analysis of FAR1 in yeast . Methods Enzymol. 283, 350– 365 (1997).
    Article CAS Google Scholar
  43. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscience, New York, 1991).
    Google Scholar
  44. Posas, F., Witten, E. A. & Saito, H. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 18, 5788–5796 (1998).
    Article CAS Google Scholar
  45. Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156 , 119–122 (1995).
    Article CAS Google Scholar
  46. Brown, J. L., Jaquenoud, M., Gulli, M. P., Chant, J. & Peter, M. Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11, 2972–2982 (1997).
    Article CAS Google Scholar
  47. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1988).
    Google Scholar
  48. Ronicke, V., Graulich, W., Mumberg, D., Muller, R. & Funk, M. Use of conditional promoters for expression of heterologous proteins in Saccharomyces cerevisiae. Methods Enzymol. 283, 313–322 ( 1997).
    Article CAS Google Scholar
  49. Johnston, L. H. & Johnson, A. L. Elutriation of budding yeast. Methods Enzymol. 283, 342–350 (1997).
    Article CAS Google Scholar
  50. Epstein, C. B. & Cross, F. R. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6, 1695–1706 ( 1992).
    Article CAS Google Scholar

Download references