Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating (original) (raw)
References
Hall, A. Rho GTPases and the actin cytoskeleton. Science279, 509–514 (1998). ArticleCAS Google Scholar
Adams, A. E., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae.J. Cell Biol.111, 131–142 (1990). ArticleCAS Google Scholar
Bähler, J. & Peter, M. in Frontiers in Molecular Biology: Cell Polarity (ed. Drubin, D. G.) (Oxford Univ. Press, Oxford, in the press).
Johnson, D. I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev.63, 54– 105 (1999). CASPubMedPubMed Central Google Scholar
Chenevert, J., Corrado, K., Bender, A., Pringle, J. & Herskowitz, I. A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature356, 77–79 (1992). ArticleCAS Google Scholar
Peterson, J., Zheng, Y., Bender, L., Myers, A., Cerione, R. & Bender, A. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J. Cell Biol.127, 1395–1406 (1994). ArticleCAS Google Scholar
Leeuw, T. et al. Pheromone response in yeast: association of Bem1p with proteins of the MAP kinase cascade and actin. Science270, 1210–1213 (1995). ArticleCAS Google Scholar
Nern, A. & Arkowitz, R. A. A Cdc24-Far1-G beta gamma protein complex required for yeast orientation during mating. J. Cell Biol.144, 1187–1202 ( 1999). ArticleCAS Google Scholar
Toenjes, K. A., Sawyer, M. M. & Johnson, D. I. The guanine-nucleotide-exchange factor Cdc24 is targeted to the nucleus and polarized growth sites. Curr. Biol.9, 1183–1186 (1999). ArticleCAS Google Scholar
Chant, J. & Stowers, L. GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell81 , 1–4 (1995). ArticleCAS Google Scholar
Segall, J. E. Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl Acad. Sci. USA90, 8332– 8336 (1993). ArticleCAS Google Scholar
Sprague, G. F. & Thorner, J. W. in The Molecular and Cellular Biology of the Yeast Saccharomyces(eds Jones, E.W., Pringle, J.R. & Broach, J.R.) 657–744 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1992). Google Scholar
Herskowitz, I. MAP kinase pathways in yeast: for mating and more. Cell80, 187–197 (1995). ArticleCAS Google Scholar
Valtz, N., Peter, M. & Herskowitz, I. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J. Cell Biol.131, 863–873 (1995). ArticleCAS Google Scholar
Nern, A. & Arkowitz, R. A. A GTP-exchange factor required for cell orientation. Nature391, 195– 198 (1998). ArticleCAS Google Scholar
Butty, A. C., Pryciak, P. M., Huang, L. S., Herskowitz, I. & Peter, M. The role of Far1 in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science282, 1511–1516 ( 1998). ArticleCAS Google Scholar
Lew, D. J. & Reed, S. I. Cell cycle control of morphogenesis in budding yeast. Curr. Opin. Genet. Dev.5, 17–23 (1995). ArticleCAS Google Scholar
McKinney, J. D. & Cross, F. R. FAR1 and the G1 phase specificity of cell cycle arrest by mating factor in Saccharomyces cerevisiae. Mol. Cell. Biol.15, 2509 –2516 (1995). ArticleCAS Google Scholar
Henchoz, S., Chi, Y., Catarin, B., Herskowitz, I., Deshaies, R. J. & Peter, M. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1 in budding yeast. Genes Dev.11, 3046–3060 (1997). ArticleCAS Google Scholar
McKinney, J. D., Chang, F., Heintz, N. & Cross, F. R. Negative regulation of FAR1 at the Start of the yeast cell cycle. Genes Dev.7, 833–843 (1993). ArticleCAS Google Scholar
Chang, F. & Herskowitz, I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell63, 999– 1011 (1990). ArticleCAS Google Scholar
Blondel, M., Alepuz, P. M., Huang, L. S., Shaham, S., Ammerer, G. & Peter, M. Nuclear export of Far1 in response to pheromones requires the export receptor Msn5/Ste21p. Genes Dev.13, 2284–2300 (1999). ArticleCAS Google Scholar
Lew, D. J. & Reed, S. I. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol.120, 1305–1320 (1993). ArticleCAS Google Scholar
Peter, M. & Herskowitz, I. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science265, 1228–1231 (1994). ArticleCAS Google Scholar
Chant, J. Generation of cell polarity in yeast. Curr. Opin. Cell Biol.8, 557–565 (1996). ArticleCAS Google Scholar
Chenevert, J. Cell polarization directed by extracellular cues in yeast. Mol. Biol. Cell5, 1169–1175 (1994). ArticleCAS Google Scholar
Arkowitz, R. A. Responding to attraction: chemotaxis and chemotropism in Dictyostelium and yeast. Trends Cell Biol.9, 20– 27 (1999). ArticleCAS Google Scholar
Bender, A. & Pringle, J. R. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl Acad. Sci. USA86, 9976–9980 (1989). ArticleCAS Google Scholar
Park, H. O., Bi, E., Pringle, J. R. & Herskowitz, I. Two active states of the Ras-related Bud1/Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc. Natl Acad. Sci. USA94, 4463–4468 (1997). ArticleCAS Google Scholar
Mahanty, S. K., Wang, Y. M., Farley, F. W. & Elion, E. A. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell98, 501–512 ( 1999). ArticleCAS Google Scholar
Alepuz, P. M., Matheos, D., Cunningham, K. W. & Estruch, F. The Saccharomyces cerevisiae RanGTP binding protein Msn5 is involved in different signal transduction pathways. Genetics153, 1219–1231 (1999). CASPubMedPubMed Central Google Scholar
Dorer, R., Pryciak, P. M. & Hartwell, L. H. Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients. J. Cell Biol.131, 845–861 (1995). Google Scholar
Kaffmann, A. & O"Shea, E. K. Regulation of nuclear localization: A key to a door. Annu. Rev. Cell Dev. Biol (in the press).
Hood, J. K. & Silver, P. A. In or out? Regulating nuclear transport. Curr. Opin. Cell Biol.11, 241 –247 (1999). ArticleCAS Google Scholar
Beg, A. A., Ruben, S. M., Scheinman, R. I., Haskill, S., Rosen, C. A. & Baldwin, A. S., Jr I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention . Genes Dev.6, 1899–1913 (1992). ArticleCAS Google Scholar
Henkel, T., Zabel, U., van Zee, K., Muller, J. M., Fanning, E. & Baeuerle, P. A. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell68, 1121–1133 (1992). ArticleCAS Google Scholar
Arenzana-Seisdedos, F. et al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J. Cell Sci.110, 369–378 (1997). CASPubMed Google Scholar
Gaits, F., Degols, G., Shiozaki, K. & Russell, P. Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev.12, 1464–1473 ( 1998). ArticleCAS Google Scholar
Chen, C. R., Li, Y. C., Chen, J., Hou, M. C., Papadaki, P. & Chang, E. C. Moe1, a conserved protein in Schizosaccharomyces pombe, interacts with a Ras effector, Scd1, to affect proper spindle formation. Proc. Natl Acad. Sci. USA96, 517–522 (1999). ArticleCAS Google Scholar
Bertagnolo, V., Marchisio, M., Volinia, S., Caramelli, E. & Capitani, S. Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett.441, 480–484 (1998). ArticleCAS Google Scholar
Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular Biology (Academic, San Diego, 1991). Google Scholar
Valtz, N. & Peter, M. Functional analysis of FAR1 in yeast . Methods Enzymol.283, 350– 365 (1997). ArticleCAS Google Scholar
Ausubel, F. M. et al.Current Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscience, New York, 1991). Google Scholar
Posas, F., Witten, E. A. & Saito, H. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol. Cell. Biol.18, 5788–5796 (1998). ArticleCAS Google Scholar
Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene156 , 119–122 (1995). ArticleCAS Google Scholar
Brown, J. L., Jaquenoud, M., Gulli, M. P., Chant, J. & Peter, M. Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev.11, 2972–2982 (1997). ArticleCAS Google Scholar
Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1988). Google Scholar
Ronicke, V., Graulich, W., Mumberg, D., Muller, R. & Funk, M. Use of conditional promoters for expression of heterologous proteins in Saccharomyces cerevisiae. Methods Enzymol.283, 313–322 ( 1997). ArticleCAS Google Scholar
Johnston, L. H. & Johnson, A. L. Elutriation of budding yeast. Methods Enzymol.283, 342–350 (1997). ArticleCAS Google Scholar
Epstein, C. B. & Cross, F. R. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev.6, 1695–1706 ( 1992). ArticleCAS Google Scholar