A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae (original) (raw)

References

  1. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).
    Article ADS CAS Google Scholar
  2. Mewes, H. W., Albermann, K., Heumann, K., Liebl, S. & Pfeiffer, F. MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res. 25 , 28–30 (1997).
    Article CAS Google Scholar
  3. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245– 246 (1989).
    Article ADS CAS Google Scholar
  4. Bartel, P. L., Roecklein, J. A., SenGupta, D. & Fields, S. A protein linkage map of Escherichia coli bacteriophage T7. Nature Genet. 12, 72–77 (1996).
    Article CAS Google Scholar
  5. Fromont-Racine, M., Rain, J. C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genet. 16, 277–282 (1997).
    Article CAS Google Scholar
  6. Flores, A. et al. A protein–protein interaction map of yeast RNA polymerase III. Proc. Natl Acad. Sci. USA 96, 7815– 7820 (1999).
    Article ADS CAS Google Scholar
  7. Martzen, M. R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999).
    Article CAS Google Scholar
  8. Hudson, J. R. Jr et al. The complete set of predicted genes from Saccharomyces cerevisiae in a readily usable form. Genome Res. 7, 1169–1173 (1997).
    Article CAS Google Scholar
  9. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144 , 1425–1436 (1996).
    CAS PubMed PubMed Central Google Scholar
  10. Hodges, P. E., McKee, A. H., Davis, B. P., Payne, W. E. & Garrels, J. I. The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Nucleic Acids Res. 27, 69–73 (1999).
    Article CAS Google Scholar
  11. Legrain, P., Dokhelar, M. C. & Transy, C. Detection of protein–protein interactions using different vectors in the two-hybrid system. Nucleic Acids Res. 22, 3241–3242 ( 1994).
    Article CAS Google Scholar
  12. Ramesh, V., Gusella, J. F. & Shih, V. E. Molecular pathology of gyrate atrophy of the choroid and retina due to ornithine aminotransferase deficiency. Mol. Biol. Med. 8, 81–93 ( 1991).
    CAS PubMed Google Scholar
  13. Scott, S. V. & Klionsky, D. J. Delivery of proteins and organelles to the vacuole from the cytoplasm. Curr. Opin. Cell Biol. 10, 523–529 (1998).
    Article CAS Google Scholar
  14. Scott, S. V. et al. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc. Natl Acad. Sci. USA 93, 12304–12308 (1996).
    Article ADS CAS Google Scholar
  15. Funakoshi, T., Matsuura, A., Noda, T. & Ohsumi, Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192, 207–213 ( 1997).
    Article CAS Google Scholar
  16. Kim, J., Scott, S. V., Oda, M. N. & Klionsky, D. J. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 137, 609– 618 (1997).
    Article CAS Google Scholar
  17. Kramer, A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65, 367– 409 (1996).
    Article CAS Google Scholar
  18. Mayes, A. E., Verdone, L., Legrain, P. & Beggs, J. D. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 18, 4321–4331 ( 1999).
    Article CAS Google Scholar
  19. Kambach, C. et al. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96 , 375–387 (1999).
    Article CAS Google Scholar
  20. Nasmyth, K. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 5, 166–179 (1993).
    Article CAS Google Scholar
  21. Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet. 20, 46–50 (1998).
    Article CAS Google Scholar
  22. Boeck, R., Lapeyre, B., Brown, C. E. & Sachs, A. B. Capped mRNA degradation intermediates accumulate in the yeast spb8-2 mutant. Mol. Cell. Biol. 18, 5062–5072 ( 1998).
    Article CAS Google Scholar
  23. Kadowaki, T. et al. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol. 126, 649–659 (1994). [Published erratum appears in J. Cell Biol. 126, 1627.]
    Article CAS Google Scholar
  24. Hollingsworth, N. M., Ponte, L. & Halsey, C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9, 1728–1739 (1995).
    Article CAS Google Scholar
  25. Usui, T. et al. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95, 705– 716 (1998).
    Article CAS Google Scholar
  26. Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).
    Article CAS Google Scholar
  27. SenGupta, D. J. et al. A three-hybrid system to detect RNA–protein interactions in vivo. Proc. Natl Acad. Sci. USA 93, 8496–8501 (1996).
    Article ADS CAS Google Scholar
  28. Wang, M. M. & Reed, R. R. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121–126 ( 1993).
    Article ADS CAS Google Scholar
  29. Li, J. J. & Herskowitz, I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system [see comments]. Science 262, 1870–1874 (1993).
    Article ADS CAS Google Scholar
  30. Licitra, E. J. & Liu, J. O. A three-hybrid system for detecting small ligand–protein receptor interactions. Proc. Natl Acad. Sci. USA 93, 12817–12821 (1996).
    Article ADS CAS Google Scholar
  31. Belshaw, P. J., Ho, S. N., Crabtree, G. R. & Schreiber, S. L. Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc. Natl Acad. Sci. USA 93, 4604–4607 ( 1996).
    Article ADS CAS Google Scholar
  32. Ma, H., Kunes, S., Schatz, P. J. & Botstein, D. Plasmid construction by homologous recombination in yeast. Gene 58, 201–216 (1987).
    Article CAS Google Scholar
  33. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168 (1983).
    CAS PubMed PubMed Central Google Scholar
  34. Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986).
    Google Scholar
  35. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  36. Minvielle-Sebastia, L., Preker, P. J., Wiederkehr, T., Strahm, Y. & Keller, W. The major yeast poly(A)-binding protein is associated with cleavage factor IA and functions in premessenger RNA 3′-end formation. Proc. Natl Acad. Sci. USA 94, 7897–7902 (1997).
    Article ADS CAS Google Scholar
  37. Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 ( 1998).
    Article ADS CAS Google Scholar
  38. Guenette, S., Magendantz, M. & Solomon, F. Suppression of a conditional mutation in alpha-tubulin by overexpression of two checkpoint genes. J. Cell Sci. 108, 1195–1204 (1995).
    CAS PubMed Google Scholar
  39. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66 , 507–517 (1991).
    Article CAS Google Scholar
  40. Seeley, T. W., Wang, L. & Zhen, J. Y. Phosphorylation of human MAD1 by the BUB1 kinase in vitro. Biochem. Biophys. Res. Commun. 257, 589–595 (1999).
    Article CAS Google Scholar
  41. Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol. 141, 1393–1406 (1998).
    Article CAS Google Scholar

Download references