Mewes, H. W., Albermann, K., Heumann, K., Liebl, S. & Pfeiffer, F. MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res.25 , 28–30 (1997). ArticleCAS Google Scholar
Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature340, 245– 246 (1989). ArticleADSCAS Google Scholar
Bartel, P. L., Roecklein, J. A., SenGupta, D. & Fields, S. A protein linkage map of Escherichia coli bacteriophage T7. Nature Genet.12, 72–77 (1996). ArticleCAS Google Scholar
Fromont-Racine, M., Rain, J. C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genet.16, 277–282 (1997). ArticleCAS Google Scholar
Flores, A. et al. A protein–protein interaction map of yeast RNA polymerase III. Proc. Natl Acad. Sci. USA96, 7815– 7820 (1999). ArticleADSCAS Google Scholar
Martzen, M. R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science286, 1153–1155 (1999). ArticleCAS Google Scholar
Hudson, J. R. Jr et al. The complete set of predicted genes from Saccharomyces cerevisiae in a readily usable form. Genome Res.7, 1169–1173 (1997). ArticleCAS Google Scholar
James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics144 , 1425–1436 (1996). CASPubMedPubMed Central Google Scholar
Hodges, P. E., McKee, A. H., Davis, B. P., Payne, W. E. & Garrels, J. I. The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Nucleic Acids Res.27, 69–73 (1999). ArticleCAS Google Scholar
Legrain, P., Dokhelar, M. C. & Transy, C. Detection of protein–protein interactions using different vectors in the two-hybrid system. Nucleic Acids Res.22, 3241–3242 ( 1994). ArticleCAS Google Scholar
Ramesh, V., Gusella, J. F. & Shih, V. E. Molecular pathology of gyrate atrophy of the choroid and retina due to ornithine aminotransferase deficiency. Mol. Biol. Med.8, 81–93 ( 1991). CASPubMed Google Scholar
Scott, S. V. & Klionsky, D. J. Delivery of proteins and organelles to the vacuole from the cytoplasm. Curr. Opin. Cell Biol.10, 523–529 (1998). ArticleCAS Google Scholar
Scott, S. V. et al. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc. Natl Acad. Sci. USA93, 12304–12308 (1996). ArticleADSCAS Google Scholar
Funakoshi, T., Matsuura, A., Noda, T. & Ohsumi, Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene192, 207–213 ( 1997). ArticleCAS Google Scholar
Kim, J., Scott, S. V., Oda, M. N. & Klionsky, D. J. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J. Cell Biol.137, 609– 618 (1997). ArticleCAS Google Scholar
Kramer, A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem.65, 367– 409 (1996). ArticleCAS Google Scholar
Mayes, A. E., Verdone, L., Legrain, P. & Beggs, J. D. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J.18, 4321–4331 ( 1999). ArticleCAS Google Scholar
Kambach, C. et al. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell96 , 375–387 (1999). ArticleCAS Google Scholar
Nasmyth, K. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol.5, 166–179 (1993). ArticleCAS Google Scholar
Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet.20, 46–50 (1998). ArticleCAS Google Scholar
Boeck, R., Lapeyre, B., Brown, C. E. & Sachs, A. B. Capped mRNA degradation intermediates accumulate in the yeast spb8-2 mutant. Mol. Cell. Biol.18, 5062–5072 ( 1998). ArticleCAS Google Scholar
Kadowaki, T. et al. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol.126, 649–659 (1994). [Published erratum appears in J. Cell Biol.126, 1627.] ArticleCAS Google Scholar
Hollingsworth, N. M., Ponte, L. & Halsey, C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev.9, 1728–1739 (1995). ArticleCAS Google Scholar
Usui, T. et al. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell95, 705– 716 (1998). ArticleCAS Google Scholar
Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell69, 439–456 (1992). ArticleCAS Google Scholar
SenGupta, D. J. et al. A three-hybrid system to detect RNA–protein interactions in vivo. Proc. Natl Acad. Sci. USA93, 8496–8501 (1996). ArticleADSCAS Google Scholar
Wang, M. M. & Reed, R. R. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature364, 121–126 ( 1993). ArticleADSCAS Google Scholar
Li, J. J. & Herskowitz, I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system [see comments]. Science262, 1870–1874 (1993). ArticleADSCAS Google Scholar
Licitra, E. J. & Liu, J. O. A three-hybrid system for detecting small ligand–protein receptor interactions. Proc. Natl Acad. Sci. USA93, 12817–12821 (1996). ArticleADSCAS Google Scholar
Belshaw, P. J., Ho, S. N., Crabtree, G. R. & Schreiber, S. L. Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc. Natl Acad. Sci. USA93, 4604–4607 ( 1996). ArticleADSCAS Google Scholar
Ma, H., Kunes, S., Schatz, P. J. & Botstein, D. Plasmid construction by homologous recombination in yeast. Gene58, 201–216 (1987). ArticleCAS Google Scholar
Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol.153, 163–168 (1983). CASPubMedPubMed Central Google Scholar
Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986). Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). ArticleCAS Google Scholar
Minvielle-Sebastia, L., Preker, P. J., Wiederkehr, T., Strahm, Y. & Keller, W. The major yeast poly(A)-binding protein is associated with cleavage factor IA and functions in premessenger RNA 3′-end formation. Proc. Natl Acad. Sci. USA94, 7897–7902 (1997). ArticleADSCAS Google Scholar
Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science279, 1041–1044 ( 1998). ArticleADSCAS Google Scholar
Guenette, S., Magendantz, M. & Solomon, F. Suppression of a conditional mutation in alpha-tubulin by overexpression of two checkpoint genes. J. Cell Sci.108, 1195–1204 (1995). CASPubMed Google Scholar
Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell66 , 507–517 (1991). ArticleCAS Google Scholar
Seeley, T. W., Wang, L. & Zhen, J. Y. Phosphorylation of human MAD1 by the BUB1 kinase in vitro. Biochem. Biophys. Res. Commun.257, 589–595 (1999). ArticleCAS Google Scholar
Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol.141, 1393–1406 (1998). ArticleCAS Google Scholar