Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer (original) (raw)
References
Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev.11, 3286– 3305 (1997). ArticleCASPubMed Google Scholar
Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature390, 465– 471 (1997). ArticleADSCASPubMed Google Scholar
Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol.13, 611–667 (1997). ArticleCASPubMed Google Scholar
Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. & Kimelman, D. A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev.11, 2359–2370 (1997). ArticleCASPubMedPubMed Central Google Scholar
Moon, R. T. & Kimelman, D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. BioEssays20, 536– 545 (1998). ArticleCASPubMed Google Scholar
Watabe, T. et al. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev.9, 3038–3050 ( 1995). ArticleCASPubMed Google Scholar
Laurent, M. N., Blitz, I. L., Hashimoto, C., Rothbacher, U. & Cho, K. W. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer. Development124, 4905– 4916 (1997). CASPubMed Google Scholar
Crease, D. J., Dyson, S. & Gurdon, J. B. Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Proc. Natl Acad. Sci. USA95, 4398–4403 ( 1998). ArticleADSCASPubMedPubMed Central Google Scholar
Candia, A. F. et al. Cellular interpretation of multiple TGF-β signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development124, 4467–4480 (1997). CASPubMed Google Scholar
Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature383, 832–836 (1996). ArticleADSCASPubMed Google Scholar
Hoodless, P. A. et al. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev. Biol.207, 364–379 (1999). ArticleCASPubMed Google Scholar
Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell94, 585–594 (1998). ArticleCASPubMed Google Scholar
Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev.10, 1443– 1454 (1996). ArticleCASPubMed Google Scholar
Waterman, M. L. & Jones, K. A. Purification of TCF-1α, a T-cell-specific transcription factor that activates the T-cell receptor Cα gene enhancer in a context-dependent manner. New Biol.2, 621–636 ( 1990). CASPubMed Google Scholar
Fujita, T., Nolan, G. P., Liou, H. C., Scott, M. L. & Baltimore, D. The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. Genes Dev.7, 1354–1363 (1993). ArticleCASPubMed Google Scholar
McKendry, R., Hsu, S. C., Harland, R. M. & Grosschedl, R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol.192, 420– 431 (1997). ArticleCASPubMed Google Scholar
He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science281, 1509–1512 ( 1998). ArticleADSCASPubMed Google Scholar
Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature398, 422–426 (1999). ArticleADSCASPubMed Google Scholar
Christian, J. L. & Moon, R. T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev.7, 13–28 (1993). ArticleCASPubMed Google Scholar
Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. & Hogan, B. L. DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development115, 639–647 (1992). CASPubMed Google Scholar
Hoppler, S. & Moon, R. T. BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech. Dev.71, 119–129 (1998). ArticleCASPubMed Google Scholar
Riese, J. et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell88, 777– 787 (1997). ArticleCASPubMed Google Scholar
Theisen, H., Haerry, T. E., O'Connor, M. B. & Marsh, J. L. Developmental territories created by mutual antagonism between Wingless and Decapentaplegic. Development122, 3939– 3948 (1996). CASPubMed Google Scholar
Brook, W. J. & Cohen, S. M. Antagonistic interactions between wingless and decapentaplegic responsible for dorsal–ventral pattern in the Drosophila leg. Science273, 1373–1377 (1996). ArticleADSCASPubMed Google Scholar
Wisotzkey, R. G. et al. Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. Development125 , 1433–1445 (1998). CASPubMed Google Scholar
Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell92, 645– 656 (1998). ArticleCASPubMed Google Scholar
Cho, K. W., Blumberg, B., Steinbeisser, H. & De Robertis, E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell67, 1111– 1120 (1991). ArticleCASPubMedPubMed Central Google Scholar
Larabell, C. A. et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signaling pathway. J. Cell. Biol.136, 1123–1136 (1997).