Ras is involved in nerve-activity-dependent regulation of muscle genes (original) (raw)

References

  1. Duclert, A. & Changeux, J. P. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol. Rev. 75, 339–368 (1995).
    Article CAS Google Scholar
  2. Eftimie, R., Brenner, H. R. & Buonanno, A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl Acad. Sci. USA 88, 1349–1353 (1991).
    Article CAS Google Scholar
  3. Klarsfeld, A. et al. Regulation of muscle AChR α subunit gene expression by electrical activity: involvement of protein kinase C and Ca2+. Neuron 2, 1229–1236 (1989).
    Article CAS Google Scholar
  4. Huang, C. F., Tong, J. & Schmidt, J. Protein kinase C couples membrane excitation to acetylcholine receptor gene inactivation in chick skeletal muscle. Neuron 9, 671–678 (1992).
    Article CAS Google Scholar
  5. Chahine, K. G., Baracchini, E. & Goldman, D. Coupling muscle electrical activity to gene expression via a cAMP-dependent second messenger system. J. Biol. Chem. 268, 2893–2898 (1993).
    CAS PubMed Google Scholar
  6. Hughes, S. M. et al. Selective accumulation of MyoD and myogenin in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118, 1137–1147 (1993).
    CAS PubMed Google Scholar
  7. Voytik, S. L., Przyborski, M., Badylak, S. F. & Konieczny, S. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev. Dyn. 98, 214–224 (1993).
    Article Google Scholar
  8. Hughes, S., Chi, M., Lowry, O. & Gundersen, K. Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. J. Cell Biol. 145, 633–642 (1999).
    Article CAS Google Scholar
  9. Chin, E. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fibre type. Genes Dev. 12, 2499–2509 (1998).
    Article CAS Google Scholar
  10. Naya, R. J. et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J. Biol. Chem. 275, 4545–4548 (2000).
    Article CAS Google Scholar
  11. Calvo, S., Venepally, P., Cheng, J. & Buonanno, A. Fibre-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol. Cell. Biol. 19, 515–525 (1999).
    Article CAS Google Scholar
  12. Semsarian, C. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400, 576–581 (1999).
    Article CAS Google Scholar
  13. Goodyear, L. J., Chung, P.-Y., Sherwood, D., Dufresne, S. D. & Moller, D. E. Effects of exercise and insulin on mitogen-activated protein kinase signalling pathways in rat skeletal muscle. Am. J. Physiol. 271, E403–E408 (1996).
    CAS PubMed Google Scholar
  14. Aronson, D. et al. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J. Clin. Invest. 99, 1251–1257 (1997).
    Article CAS Google Scholar
  15. Widegren, U. et al. Divergent effects of exercise on metabolic and mitogenic signalling pathways in human skeletal muscle. FASEB J. 12, 1379–1389 (1998).
    Article CAS Google Scholar
  16. Aronson, D., Dufresne, S. D. & Goodyear, L. J. Contractile activity stimulates the c-Jun NH2-terminal kinase pathway in rat skeletal muscle. J. Biol. Chem. 272, 25636–25640 (1997).
    Article CAS Google Scholar
  17. Sherwood, D. et al. Differential regulation of MAP kinase, p70(S6K), and Akt by contraction and insulin in rat skeletal muscle. Am. J. Physiol. 276, E870–E878 (1999).
    CAS PubMed Google Scholar
  18. Esser, K., Gunning, P. & Hardeman, E. Nerve-dependent and -independent patterns of mRNA expression in regenerating skeletal muscle. Dev. Biol. 159, 173–183 (1993).
    Article Google Scholar
  19. Vitadello, M., Schiaffino, M. V., Picard, A., Scarpa, M. & Schiaffino, S. Gene transfer in regenerating muscle. Hum. Gene Ther. 5, 11–18 (1994).
    Article CAS Google Scholar
  20. Schiaffino, S. & Reggiani, C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76, 371–423 (1996).
    Article CAS Google Scholar
  21. Jerkovic, R., Argentini, C., Serrano-Sanchez, A., Cordonnier, C. & Schiaffino, S. Early myosin switching induced by nerve activity in regenerating slow skeletal muscle. Cell Struct. Funct. 22, 147–153 (1997).
    Article CAS Google Scholar
  22. White, M. et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533–541 (1995).
    Article CAS Google Scholar
  23. Joneson, T., White, M., Wigler, M. & Bar-Sagi, D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271, 810–812 (1996).
    Article CAS Google Scholar
  24. Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467 (1997).
    Article CAS Google Scholar
  25. Jerkovic, R., Vitadello, M., Kelly, R., Buckingham, M. & Schiaffino, S. Fibre type-specific and nerve-dependent regulation of myosin light chain 1 slow promoter in regenerating muscle. J. Muscle Res. Cell Motil. 18, 369–373 (1997).
    Article CAS Google Scholar
  26. Wolff, J. A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990).
    Article CAS Google Scholar
  27. Devlin, B. H., Wefald, F. C., Kraus, W. E., Bernard, T. S. & Williams, R. S. Identification of a muscle-specific enhancer within the 5"-flanking region of the human myoglobin gene. J. Biol. Chem. 264, 13896–13901 (1989).
    CAS PubMed Google Scholar
  28. Hennig, R. & Lømo, T. Firing patterns of motor units in normal rats. Nature 314, 164–166 (1985).
    Article CAS Google Scholar
  29. Ausoni, S., Gorza, L., Schiaffino, S., Gundersen, K. & Lømo, T. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J. Neurosci. 10, 153–160 (1990).
    Article CAS Google Scholar
  30. Olson, E. N., Spizz, G. & Tainski, M. A. The oncogenic forms of N-ras and H-ras prevent skeletal myoblast differentiation. Mol. Cell. Biol. 7, 2104–2111 (1987).
    Article CAS Google Scholar
  31. Bennet, A. M. & Tonks, N. K. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278, 1288–1291 (1997).
    Article Google Scholar
  32. Gredinger, E., Gerber, A. N., Tamir, Y., Tapscott, S. J. & Bengal, E. Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J. Biol. Chem. 273, 10436–10444 (1998).
    Article CAS Google Scholar
  33. Feldman, J. L. & Stockdale, F. E. Skeletal muscle satellite cell diversity: satellite cells form fibres of different types in cell culture. Dev. Biol. 143, 320–334 (1991).
    Article CAS Google Scholar
  34. Dusterhoft, S. & Pette, D. Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation 53, 25–33 (1993).
    Article CAS Google Scholar
  35. Barjot, C., Cotten, M.-L., Goblet, C., Whalen, R. G. & Bacou, F. Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures. J. Muscle Res. Cell Motil. 16, 619–628 (1995).
    Article CAS Google Scholar
  36. Rosenblatt, J., Parry, D. & Partridge, T. Phenotype of adult mouse muscle myoblasts reflects their fibre type of origin. Differentiation 60, 39–45 (1996).
    Article CAS Google Scholar
  37. DiMario, J. X., & Stockdale, F. E. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev. Biol. 188, 167–180 (1997).
    Article CAS Google Scholar
  38. Finkbeiner, S. & Greenberg, M. E. Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16, 233–236 (1996).
    Article CAS Google Scholar
  39. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).
    Article CAS Google Scholar
  40. Dolmetsch, R., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).
    Article CAS Google Scholar
  41. Fields, R. D., Eshete, F., Stevens, B. & Itoh, K. Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signalling. J. Neurosci. 17, 7252–7266 (1997).
    Article CAS Google Scholar
  42. Ramocki, M. B. et al. Signalling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis. Mol. Cell. Biol. 17, 3547–3555 (1997).
    Article CAS Google Scholar
  43. Hasegawa, K., Lee, S. J., Jobe, S. M., Markham, B. E. & Kitsis, R. N. Cis-acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 96, 3943–3953 (1997).
    Article CAS Google Scholar
  44. Crespo, P. et al. Signalling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway. J. Biol. Chem. 269, 21103–21109 (1994).
    CAS PubMed Google Scholar
  45. Schiaffino, S. et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J. Muscle Res. Cell Motil. 10, 197–205 (1989).
    Article CAS Google Scholar
  46. De Nardi, C. et al. Type 2X myosin heavy chain is coded by a muscle fibre type-specific and developmentally regulated gene. J. Cell Biol. 123, 823–835 (1993).
    Article CAS Google Scholar

Download references