Ras is involved in nerve-activity-dependent regulation of muscle genes (original) (raw)
References
Duclert, A. & Changeux, J. P. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol. Rev.75, 339–368 (1995). ArticleCAS Google Scholar
Eftimie, R., Brenner, H. R. & Buonanno, A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl Acad. Sci. USA88, 1349–1353 (1991). ArticleCAS Google Scholar
Klarsfeld, A. et al. Regulation of muscle AChR α subunit gene expression by electrical activity: involvement of protein kinase C and Ca2+. Neuron2, 1229–1236 (1989). ArticleCAS Google Scholar
Huang, C. F., Tong, J. & Schmidt, J. Protein kinase C couples membrane excitation to acetylcholine receptor gene inactivation in chick skeletal muscle. Neuron9, 671–678 (1992). ArticleCAS Google Scholar
Chahine, K. G., Baracchini, E. & Goldman, D. Coupling muscle electrical activity to gene expression via a cAMP-dependent second messenger system. J. Biol. Chem.268, 2893–2898 (1993). CASPubMed Google Scholar
Hughes, S. M. et al. Selective accumulation of MyoD and myogenin in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development118, 1137–1147 (1993). CASPubMed Google Scholar
Voytik, S. L., Przyborski, M., Badylak, S. F. & Konieczny, S. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev. Dyn.98, 214–224 (1993). Article Google Scholar
Hughes, S., Chi, M., Lowry, O. & Gundersen, K. Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. J. Cell Biol.145, 633–642 (1999). ArticleCAS Google Scholar
Chin, E. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fibre type. Genes Dev.12, 2499–2509 (1998). ArticleCAS Google Scholar
Naya, R. J. et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J. Biol. Chem.275, 4545–4548 (2000). ArticleCAS Google Scholar
Calvo, S., Venepally, P., Cheng, J. & Buonanno, A. Fibre-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol. Cell. Biol.19, 515–525 (1999). ArticleCAS Google Scholar
Semsarian, C. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature400, 576–581 (1999). ArticleCAS Google Scholar
Goodyear, L. J., Chung, P.-Y., Sherwood, D., Dufresne, S. D. & Moller, D. E. Effects of exercise and insulin on mitogen-activated protein kinase signalling pathways in rat skeletal muscle. Am. J. Physiol.271, E403–E408 (1996). CASPubMed Google Scholar
Aronson, D. et al. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J. Clin. Invest.99, 1251–1257 (1997). ArticleCAS Google Scholar
Widegren, U. et al. Divergent effects of exercise on metabolic and mitogenic signalling pathways in human skeletal muscle. FASEB J.12, 1379–1389 (1998). ArticleCAS Google Scholar
Aronson, D., Dufresne, S. D. & Goodyear, L. J. Contractile activity stimulates the c-Jun NH2-terminal kinase pathway in rat skeletal muscle. J. Biol. Chem.272, 25636–25640 (1997). ArticleCAS Google Scholar
Sherwood, D. et al. Differential regulation of MAP kinase, p70(S6K), and Akt by contraction and insulin in rat skeletal muscle. Am. J. Physiol.276, E870–E878 (1999). CASPubMed Google Scholar
Esser, K., Gunning, P. & Hardeman, E. Nerve-dependent and -independent patterns of mRNA expression in regenerating skeletal muscle. Dev. Biol.159, 173–183 (1993). Article Google Scholar
Vitadello, M., Schiaffino, M. V., Picard, A., Scarpa, M. & Schiaffino, S. Gene transfer in regenerating muscle. Hum. Gene Ther.5, 11–18 (1994). ArticleCAS Google Scholar
Schiaffino, S. & Reggiani, C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev.76, 371–423 (1996). ArticleCAS Google Scholar
Jerkovic, R., Argentini, C., Serrano-Sanchez, A., Cordonnier, C. & Schiaffino, S. Early myosin switching induced by nerve activity in regenerating slow skeletal muscle. Cell Struct. Funct.22, 147–153 (1997). ArticleCAS Google Scholar
White, M. et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell80, 533–541 (1995). ArticleCAS Google Scholar
Joneson, T., White, M., Wigler, M. & Bar-Sagi, D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science271, 810–812 (1996). ArticleCAS Google Scholar
Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell89, 457–467 (1997). ArticleCAS Google Scholar
Jerkovic, R., Vitadello, M., Kelly, R., Buckingham, M. & Schiaffino, S. Fibre type-specific and nerve-dependent regulation of myosin light chain 1 slow promoter in regenerating muscle. J. Muscle Res. Cell Motil.18, 369–373 (1997). ArticleCAS Google Scholar
Wolff, J. A. et al. Direct gene transfer into mouse muscle in vivo. Science247, 1465–1468 (1990). ArticleCAS Google Scholar
Devlin, B. H., Wefald, F. C., Kraus, W. E., Bernard, T. S. & Williams, R. S. Identification of a muscle-specific enhancer within the 5"-flanking region of the human myoglobin gene. J. Biol. Chem.264, 13896–13901 (1989). CASPubMed Google Scholar
Hennig, R. & Lømo, T. Firing patterns of motor units in normal rats. Nature314, 164–166 (1985). ArticleCAS Google Scholar
Ausoni, S., Gorza, L., Schiaffino, S., Gundersen, K. & Lømo, T. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J. Neurosci.10, 153–160 (1990). ArticleCAS Google Scholar
Olson, E. N., Spizz, G. & Tainski, M. A. The oncogenic forms of N-ras and H-ras prevent skeletal myoblast differentiation. Mol. Cell. Biol.7, 2104–2111 (1987). ArticleCAS Google Scholar
Bennet, A. M. & Tonks, N. K. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science278, 1288–1291 (1997). Article Google Scholar
Gredinger, E., Gerber, A. N., Tamir, Y., Tapscott, S. J. & Bengal, E. Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J. Biol. Chem.273, 10436–10444 (1998). ArticleCAS Google Scholar
Feldman, J. L. & Stockdale, F. E. Skeletal muscle satellite cell diversity: satellite cells form fibres of different types in cell culture. Dev. Biol.143, 320–334 (1991). ArticleCAS Google Scholar
Dusterhoft, S. & Pette, D. Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation53, 25–33 (1993). ArticleCAS Google Scholar
Barjot, C., Cotten, M.-L., Goblet, C., Whalen, R. G. & Bacou, F. Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures. J. Muscle Res. Cell Motil.16, 619–628 (1995). ArticleCAS Google Scholar
Rosenblatt, J., Parry, D. & Partridge, T. Phenotype of adult mouse muscle myoblasts reflects their fibre type of origin. Differentiation60, 39–45 (1996). ArticleCAS Google Scholar
DiMario, J. X., & Stockdale, F. E. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev. Biol.188, 167–180 (1997). ArticleCAS Google Scholar
Finkbeiner, S. & Greenberg, M. E. Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron16, 233–236 (1996). ArticleCAS Google Scholar
Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature375, 784–787 (1995). ArticleCAS Google Scholar
Dolmetsch, R., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature386, 855–858 (1997). ArticleCAS Google Scholar
Fields, R. D., Eshete, F., Stevens, B. & Itoh, K. Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signalling. J. Neurosci.17, 7252–7266 (1997). ArticleCAS Google Scholar
Ramocki, M. B. et al. Signalling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis. Mol. Cell. Biol.17, 3547–3555 (1997). ArticleCAS Google Scholar
Hasegawa, K., Lee, S. J., Jobe, S. M., Markham, B. E. & Kitsis, R. N. Cis-acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation96, 3943–3953 (1997). ArticleCAS Google Scholar
Crespo, P. et al. Signalling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway. J. Biol. Chem.269, 21103–21109 (1994). CASPubMed Google Scholar
Schiaffino, S. et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J. Muscle Res. Cell Motil.10, 197–205 (1989). ArticleCAS Google Scholar
De Nardi, C. et al. Type 2X myosin heavy chain is coded by a muscle fibre type-specific and developmentally regulated gene. J. Cell Biol.123, 823–835 (1993). ArticleCAS Google Scholar