The structure of malaria pigment β-haematin (original) (raw)

References

  1. Fitch, C. D. & Kanjananggulpan, P. The state of ferriprotoporphyrin IX in malaria pigment. J. Biol. Chem. 262, 15552–15555 (1987).
    CAS PubMed Google Scholar
  2. Slater, A. F. G. et al. An iron–carboxylate bond links the heme units of malaria pigment. Proc. Natl Acad. Sci. USA 88, 325–329 (1991).
    Article ADS CAS Google Scholar
  3. Bohle, D. S. et al. Structural and spectroscopic studies of β-hematin (the heme coordination polymer in malaria pigment. Am. Chem. Soc. Symp. Ser. 572, 497–515 ( 1994).
    CAS Google Scholar
  4. Bohle, D. S., Dinnebier, R. E., Madsen, S. K. & Stephens, P. W. Characterization of the products of the heme detoxification pathway in malarial late trophozoites by X-ray diffraction. J. Biol. Chem. 272, 713–716 (1997).
    Article CAS Google Scholar
  5. Olliaro, P. L. & Goldberg, D. E. The plasmodium digestive vacuole- metabolic headquarters and choice drug target. Parasitol. Today 11, 294–297 ( 1995).
    Article CAS Google Scholar
  6. Yayon, A., Cabantchik, I. & Ginsburg, H. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc. Natl Acad. Sci. USA 82, 2784–2788 (1985).
    Article ADS CAS Google Scholar
  7. Homewood, C., Warhurst, D., Peters, W. & Baggaley, V. Lysosomes, pH and the anti-malarial action of chloroquine. Nature 235, 50–52 (1972).
    Article ADS CAS Google Scholar
  8. Slater, A. F. G. & Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 355, 167–169 ( 1992).
    Article ADS CAS Google Scholar
  9. Dorn, A., Stoffel, R., Matile, H., Bubendorf, A. & Ridley, R. G. Malarial haemozoin/β-haematin supports haem polymerization in the absence of protein. Nature 374 , 269–271 (1995).
    Article ADS CAS Google Scholar
  10. Sullivan, D. J., Gluzman, I. Y., Russell, D. G. & Goldberg, D. E. On the molecular mechanism of chloroquine's antimalarial action. Proc. Natl Acad. Sci. USA 93, 11865– 11870 (1996).
    Article ADS CAS Google Scholar
  11. Bohle, D. S., Debrunner, P., Jordan, P. A., Madsen, S. K. & Schulz, C. E. Aggregated heme detoxification byproducts in malarial trophozoites: β-hematin and malaria pigment have a single S = 5/2 iron environment in the bulk phase as determined by EPR and magnetic Mössbauer spectroscopy. J. Am. Chem. Soc. 120, 8255–8256 (1998).
    Article CAS Google Scholar
  12. Adams, P. A., Berman, P. A. M., Egan, T. J., Marsh, P. J. & Silver, J. The iron environment in heme and heme-antimalarial complexes of pharmacological interest. J. Inorg. Biochem. 63, 69–77 ( 1996).
    Article CAS Google Scholar
  13. Dorn, A. et al. An assessment of drug–haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem. Pharmacol. 55, 727–736 (1998).
    Article CAS Google Scholar
  14. Bendrat, K., Berger, B. J. & Cerami, A. Haem polymerization in malaria. Nature 378, 138 (1995).
    Article ADS CAS Google Scholar
  15. Ridley, R. G., Dorn, A., Matile, H. & Kansy, M. Haem polymerization in malaria. Nature 378, 138– 139 (1995).
    Article ADS CAS Google Scholar
  16. Francis, S. E., Sullivan, D. J. & Goldberg, D. E. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol. 51 , 97–123 (1997).
    Article CAS Google Scholar
  17. Bohle, D. S. & Helms, J. B. Synthesis of beta-hematin by dehydrohalogenation of hemin. Biochem. Biophys. Res. Commun. 193, 504–508 (1993).
    Article CAS Google Scholar
  18. David, W. I. F., Shankland, K. & Shankland, N. Routine determination of molecular crystal structures from powder diffraction data. Chem. Commun. 931– 932 (1998).
  19. Andreev, Y. G. & Bruce, P. G. Solving crystal structures of molecular solids without single crystals: a simulated annealing approach. J. Chem. Soc. Dalton Trans. 4071–4080 (1998).
  20. Koenig, D. F. The structure of α-chlorohemin. Acta Crystallogr. 18, 663–673 (1965).
    Article CAS Google Scholar
  21. LeBail, A., Duroy, H. & Fourquest, J. L. Ab initio structure determination of LiSbWO 6 by X-ray-powder diffraction. Mater. Res. Bull. 23, 447–452 (1988).
    Article CAS Google Scholar
  22. Larson, A. C. & Von Dreele, R. B. GSAS General Structure Analysis System (Los Alamos Laboratory Report No. LA-UR-86-748, Los Alamos, 1987).
    Google Scholar
  23. Bominaar, E. L. et al. Structural, Mossbauer, and EPR investigations on two oxidation states of a five-coordinate, high spin synthetic heme. Quantitative interpretation of zero-field parameters and large quadrupole splitting. Inorg. Chem. 31, 1845–1854 ( 1992).
    Article CAS Google Scholar
  24. Scheidt, W. R. & Lee, Y. J. Recent advances in the stereochemistry of metallotetrapyrroles. Struct. Bond. 64, 1–70 (1987).
    Article CAS Google Scholar
  25. Lemberg, R. & Legge, J. W. Haematin Compounds and Bile Pigments (Interscience, New York, 1949).
    Google Scholar
  26. Sullivan, D. J., Matile, H., Ridley, R. G. & Goldberg, D. E. A common mechanism for blockade of heme polymerization by antimalarial quinolines. J. Biol. Chem. 273, 31103– 31107 (1998).
    Article CAS Google Scholar
  27. Slater, A. F. G. Chloroquine-mechanism of drug-action and resistance in Plasmodium falciparum . Pharm. Ther. 57, 203– 235 (1993).
    Article CAS Google Scholar
  28. Egan, T. J., Hempelmann, E. & Mavuso, W. W. Characterisation of synthetic beta-haematin and effects of the antimalarial drugs quinidine, halofantrine, desbutylhalofantrine and mefloquine on its formation. J. Inorg. Biochem. 73, 101–107 (1999).
    Article CAS Google Scholar
  29. Gluzman, I. Y. et al. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J. Clin. Invest. 93 , 1602–1608 (1994).
    Article CAS Google Scholar
  30. Francis, S. E., Gluzman, I. Y., Oksman, A., Banerjee, D. & Goldberg, D. E. Characterization of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol. Biochem. Parasitol. 83, 189– 200 (1996).
    Article CAS Google Scholar

Download references