The structure of malaria pigment β-haematin (original) (raw)
References
Fitch, C. D. & Kanjananggulpan, P. The state of ferriprotoporphyrin IX in malaria pigment. J. Biol. Chem.262, 15552–15555 (1987). CASPubMed Google Scholar
Slater, A. F. G. et al. An iron–carboxylate bond links the heme units of malaria pigment. Proc. Natl Acad. Sci. USA88, 325–329 (1991). ArticleADSCAS Google Scholar
Bohle, D. S. et al. Structural and spectroscopic studies of β-hematin (the heme coordination polymer in malaria pigment. Am. Chem. Soc. Symp. Ser.572, 497–515 ( 1994). CAS Google Scholar
Bohle, D. S., Dinnebier, R. E., Madsen, S. K. & Stephens, P. W. Characterization of the products of the heme detoxification pathway in malarial late trophozoites by X-ray diffraction. J. Biol. Chem.272, 713–716 (1997). ArticleCAS Google Scholar
Olliaro, P. L. & Goldberg, D. E. The plasmodium digestive vacuole- metabolic headquarters and choice drug target. Parasitol. Today11, 294–297 ( 1995). ArticleCAS Google Scholar
Yayon, A., Cabantchik, I. & Ginsburg, H. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc. Natl Acad. Sci. USA82, 2784–2788 (1985). ArticleADSCAS Google Scholar
Homewood, C., Warhurst, D., Peters, W. & Baggaley, V. Lysosomes, pH and the anti-malarial action of chloroquine. Nature235, 50–52 (1972). ArticleADSCAS Google Scholar
Slater, A. F. G. & Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature355, 167–169 ( 1992). ArticleADSCAS Google Scholar
Dorn, A., Stoffel, R., Matile, H., Bubendorf, A. & Ridley, R. G. Malarial haemozoin/β-haematin supports haem polymerization in the absence of protein. Nature374 , 269–271 (1995). ArticleADSCAS Google Scholar
Sullivan, D. J., Gluzman, I. Y., Russell, D. G. & Goldberg, D. E. On the molecular mechanism of chloroquine's antimalarial action. Proc. Natl Acad. Sci. USA93, 11865– 11870 (1996). ArticleADSCAS Google Scholar
Bohle, D. S., Debrunner, P., Jordan, P. A., Madsen, S. K. & Schulz, C. E. Aggregated heme detoxification byproducts in malarial trophozoites: β-hematin and malaria pigment have a single S = 5/2 iron environment in the bulk phase as determined by EPR and magnetic Mössbauer spectroscopy. J. Am. Chem. Soc.120, 8255–8256 (1998). ArticleCAS Google Scholar
Adams, P. A., Berman, P. A. M., Egan, T. J., Marsh, P. J. & Silver, J. The iron environment in heme and heme-antimalarial complexes of pharmacological interest. J. Inorg. Biochem.63, 69–77 ( 1996). ArticleCAS Google Scholar
Dorn, A. et al. An assessment of drug–haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem. Pharmacol.55, 727–736 (1998). ArticleCAS Google Scholar
Bendrat, K., Berger, B. J. & Cerami, A. Haem polymerization in malaria. Nature378, 138 (1995). ArticleADSCAS Google Scholar
Ridley, R. G., Dorn, A., Matile, H. & Kansy, M. Haem polymerization in malaria. Nature378, 138– 139 (1995). ArticleADSCAS Google Scholar
Francis, S. E., Sullivan, D. J. & Goldberg, D. E. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol.51 , 97–123 (1997). ArticleCAS Google Scholar
Bohle, D. S. & Helms, J. B. Synthesis of beta-hematin by dehydrohalogenation of hemin. Biochem. Biophys. Res. Commun.193, 504–508 (1993). ArticleCAS Google Scholar
David, W. I. F., Shankland, K. & Shankland, N. Routine determination of molecular crystal structures from powder diffraction data. Chem. Commun. 931– 932 (1998).
Andreev, Y. G. & Bruce, P. G. Solving crystal structures of molecular solids without single crystals: a simulated annealing approach. J. Chem. Soc. Dalton Trans. 4071–4080 (1998).
Koenig, D. F. The structure of α-chlorohemin. Acta Crystallogr.18, 663–673 (1965). ArticleCAS Google Scholar
LeBail, A., Duroy, H. & Fourquest, J. L. Ab initio structure determination of LiSbWO 6 by X-ray-powder diffraction. Mater. Res. Bull.23, 447–452 (1988). ArticleCAS Google Scholar
Larson, A. C. & Von Dreele, R. B. GSAS General Structure Analysis System (Los Alamos Laboratory Report No. LA-UR-86-748, Los Alamos, 1987). Google Scholar
Bominaar, E. L. et al. Structural, Mossbauer, and EPR investigations on two oxidation states of a five-coordinate, high spin synthetic heme. Quantitative interpretation of zero-field parameters and large quadrupole splitting. Inorg. Chem.31, 1845–1854 ( 1992). ArticleCAS Google Scholar
Scheidt, W. R. & Lee, Y. J. Recent advances in the stereochemistry of metallotetrapyrroles. Struct. Bond.64, 1–70 (1987). ArticleCAS Google Scholar
Lemberg, R. & Legge, J. W. Haematin Compounds and Bile Pigments (Interscience, New York, 1949). Google Scholar
Sullivan, D. J., Matile, H., Ridley, R. G. & Goldberg, D. E. A common mechanism for blockade of heme polymerization by antimalarial quinolines. J. Biol. Chem.273, 31103– 31107 (1998). ArticleCAS Google Scholar
Slater, A. F. G. Chloroquine-mechanism of drug-action and resistance in Plasmodium falciparum . Pharm. Ther.57, 203– 235 (1993). ArticleCAS Google Scholar
Egan, T. J., Hempelmann, E. & Mavuso, W. W. Characterisation of synthetic beta-haematin and effects of the antimalarial drugs quinidine, halofantrine, desbutylhalofantrine and mefloquine on its formation. J. Inorg. Biochem.73, 101–107 (1999). ArticleCAS Google Scholar
Gluzman, I. Y. et al. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J. Clin. Invest.93 , 1602–1608 (1994). ArticleCAS Google Scholar
Francis, S. E., Gluzman, I. Y., Oksman, A., Banerjee, D. & Goldberg, D. E. Characterization of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol. Biochem. Parasitol.83, 189– 200 (1996). ArticleCAS Google Scholar