PAR3 is a cofactor for PAR4 activation by thrombin (original) (raw)

References

  1. Coughlin,S. R. How the protease thrombin talks to cells. Proc. Natl Acad. Sci. USA 96, 11023–11027 ( 1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  2. Ishihara,H. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502– 506 (1997).
    Article ADS CAS PubMed Google Scholar
  3. Kahn,M. L. et al. A dual thrombin receptor system for platelet activation. Nature 394, 690–694 ( 1998).
    Article ADS CAS PubMed Google Scholar
  4. Ishihara,H., Zeng,D., Connolly,A. J., Tam,C. & Coughlin,S. R. Antibodies to protease-activated receptor 3 inhibit activation of mouse platelets by thrombin. Blood 91, 4152–4157 (1998).
    CAS PubMed Google Scholar
  5. Kuner,R. et al. Role of heteromer formation in GABAB receptor function. Science 283, 74–77 ( 1999).
    Article ADS CAS PubMed Google Scholar
  6. Jordan,B. A. & Devi,L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–699 (1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  7. White,J. H. et al. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679 –682 (1998).
    Article ADS CAS PubMed Google Scholar
  8. Kaupmann,K. et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683– 687 (1998).
    Article ADS CAS PubMed Google Scholar
  9. Kahn,M. L., Nakanishi-Matsui,M., Shapiro, M. J., Ishihara,H. & Coughlin,S. R. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest. 103, 879–887 ( 1999).
    Article CAS PubMed PubMed Central Google Scholar
  10. Vu,T. -K. H., Wheaton,V. I., Hung,D. T. & Coughlin,S. R. Domains specifying thrombin–receptor interaction. Nature 353, 674–677 ( 1991).
    Article ADS CAS PubMed Google Scholar
  11. Liu,L., Vu,T. -K. H., Esmon,C. T. & Coughlin,S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J. Biol. Chem. 266, 16977–16980 (1991).
    CAS PubMed Google Scholar
  12. Mathews,I. I. et al. Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33, 3266–3279 (1994).
    Article CAS PubMed Google Scholar
  13. Ishii,K., Gerszten,R., Zheng,Y. -W., Turck,C. W. & Coughlin,S. R. Determinants of thrombin receptor cleavage: receptor domains involved, specificity, and role of the P3 aspartate. J. Biol. Chem. 270, 16435– 16440 (1995).
    Article CAS PubMed Google Scholar
  14. Ishii,K., Hein,L., Kobilka,B. & Coughlin,S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J. Biol. Chem. 268, 9780–9786 (1993).
    CAS PubMed Google Scholar
  15. Vu,T. -K. H., Hung,D. T., Wheaton,V. I. & Coughlin,S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991).
    Article CAS PubMed Google Scholar
  16. Xu,W. F. et al. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95, 6642– 6646 (1998).
    Article ADS CAS PubMed PubMed Central Google Scholar
  17. Okamura,T., Hasitz,M. & Jamieson, G. A. Platelet glycocalicin: interaction with thrombin and role as thrombin receptor on the platelet surface. J. Biol. Chem. 253, 3435–3443 ( 1978).
    Google Scholar
  18. Colman,R. W., Marder,V. J., Salzman,E. W. & Hirsh,J. in Hemostasis and Thrombosis (eds Colman, R. W., Marder, V. J., Salzman, E. W. & Hirsh, J.) 3–18 (Lippincott, Philadelphia, 1994).
    Google Scholar
  19. Ulevitch,R. J. & Tobias,P. S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13, 437–457 ( 1995).
    Article CAS PubMed Google Scholar
  20. Chow,J. C., Young,D. W., Golenbock,D. T., Christ,W. J. & Gusovsky,F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274, 10689–10692 (1999).
    Article CAS PubMed Google Scholar
  21. Heinrich,P. C., Behrmann,I., Müller-Newen, G., Schaper,F. & Graeve,L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334 , 297–314 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  22. Klagsbrun,M. Mediators of angiogenesis: the biological significance of basic fibroblast growth factor (bFGF)–heparin and heparan sulfate interactions. Semin. Cancer Biol. 3, 81–87 (1992).
    CAS PubMed Google Scholar
  23. Vivien,D., Attisano,L., Wrana,J. L. & Massagué,J. Signaling activity of homologous and heterologous transforming growth factor-beta receptor kinase complexes. J. Biol. Chem. 270, 7134 –7141 (1995).
    Article CAS PubMed Google Scholar
  24. Chen,J., Ishii,M., Wang,L., Ishii,K. & Coughlin,S. R. Thrombin receptor activation: confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J. Biol. Chem. 269, 16041 –16045 (1994).
    CAS PubMed Google Scholar
  25. Sage,S. O. in Platelets, A Practical Approach (eds Watson, S. P. & Authi, K. S.) 67–90 (IRL, Oxford, 1996).
    Google Scholar

Download references