Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response (original) (raw)
References
Lee, A. Mammalian stress response: induction of the glucose-regulated protein family. Curr. Biol.4, 267–273 ( 1992). ArticleCAS Google Scholar
Brostrom, C. O. & Brostrom, M. A. Regulation of translational initiation during cellular responses to stress. Prog. Nucleic Acid Res. Mol. Biol.58, 79– 125 (1998). ArticleCAS Google Scholar
Chapman, R., Sidrauski, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell Dev. Biol. 14, 459–485 (1998). ArticleCAS Google Scholar
Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev.13, 1211–1233 ( 1999). ArticleCAS Google Scholar
Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev.12, 1812–1824 (1998). ArticleCAS Google Scholar
Wang, X. Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J.17, 5708– 5717 (1998). ArticleCAS Google Scholar
Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell Biol.18, 7499–7509 (1998). ArticleCAS Google Scholar
Harding, H., Zhang, Y. & Ron, D. Translation and protein folding are coupled by an endoplasmic reticulum resident kinase. Nature397, 271– 274 (1999). ArticleCAS Google Scholar
Munro, S. & Pelham, H. R. An Hsp70-like protein in the ER: identity with the 78 kDa glucose- regulated protein and immunoglobulin heavy chain binding protein. Cell46, 291– 300 (1986). ArticleCAS Google Scholar
Wei, J. & Hendershot, L. M. Characterization of the nucleotide binding properties and ATPase activity of recombinant hamster BiP purified from bacteria. J. Biol. Chem.270, 26670 –26676 (1995). ArticleCAS Google Scholar
Hebert, D. N., Simons, J. F., Peterson, J. R. & Helenius, A. Calnexin, calreticulin, and Bip/Kar2p in protein folding. Cold Spring Harb. Symp. Quant. Biol.60, 405– 415 (1995). ArticleCAS Google Scholar
Dorner, A., Wasley, L. & Kaufman, R. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J.11, 1563– 1571 (1992). ArticleCAS Google Scholar
Wang, et al. Signals from the stressed endoplasmic reticulum induce C/EBP homologous protein (CHOP/GADD153). Mol. Cell Biol.16, 4273 –4280 (1996). ArticleCAS Google Scholar
Shamu, C. E. & Walter, P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J.15, 3028– 3039 (1996). ArticleCAS Google Scholar
Welihinda, A. A. & Kaufman, R. J. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and _trans_-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J. Biol. Chem.271, 18181– 18187 (1996). ArticleCAS Google Scholar
Langland, J. O. & Jacobs, B. L. Cytosolic double-stranded RNA-dependent protein kinase is likely a dimer of partially phosphorylated _M_r 66,000 subunits. J. Biol. Chem.267 , 10729–10736 (1992). CASPubMed Google Scholar
Reinhard, C., Shamoon, B., Shyamala, V. & Williams, L. T. Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2. EMBO J.16, 1080– 1092 (1997). ArticleCAS Google Scholar
Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell92, 351– 366 (1998). ArticleCAS Google Scholar
Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell97, 553–564 (1999). ArticleCAS Google Scholar
Liberek, K., Galitski, T. P., Zylicz, M. & Georgopoulos, C. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc. Natl Acad. Sci. USA89, 3516–3520 (1992). ArticleCAS Google Scholar
Gamer, J., Bujard, H. & Bukau, B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32 . Cell69, 833–842 (1992). ArticleCAS Google Scholar
Tomoyasu, T., Ogura, T., Tatsuta, T. & Bukau, B. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol. Microbiol.30, 567–581 (1998). ArticleCAS Google Scholar
Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators . Genes Dev.12, 3788–3796 (1998). ArticleCAS Google Scholar
Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell94, 471–480 ( 1998). ArticleCAS Google Scholar
Straus, D. B., Walter, W. A. & Gross, C. A. The activity of sigma 32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev.3, 2003–2010 (1989). ArticleCAS Google Scholar
Kohno, K., Normington, K., Sambrook, J., Gething, M. J. & Mori, K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell Biol.13, 877–890 (1993). ArticleCAS Google Scholar
Freiden, P. J., Gaut, J. R. & Hendershot, L. M. Interconversion of three differentially modified and assembled forms of BiP. EMBO J.11, 63–70 (1992). ArticleCAS Google Scholar
Hendershot, L. M. et al.In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Mol. Biol. Cell6, 283–296 ( 1995). ArticleCAS Google Scholar
Bertolotti, A. et al. EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol. Cell Biol.18, 1489–1497 (1998). ArticleCAS Google Scholar