Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response (original) (raw)

References

  1. Lee, A. Mammalian stress response: induction of the glucose-regulated protein family. Curr. Biol. 4, 267–273 ( 1992).
    Article CAS Google Scholar
  2. Brostrom, C. O. & Brostrom, M. A. Regulation of translational initiation during cellular responses to stress. Prog. Nucleic Acid Res. Mol. Biol. 58, 79– 125 (1998).
    Article CAS Google Scholar
  3. Chapman, R., Sidrauski, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell Dev. Biol. 14, 459–485 (1998).
    Article CAS Google Scholar
  4. Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233 ( 1999).
    Article CAS Google Scholar
  5. Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).
    Article CAS Google Scholar
  6. Wang, X. Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17, 5708– 5717 (1998).
    Article CAS Google Scholar
  7. Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell Biol. 18, 7499–7509 (1998).
    Article CAS Google Scholar
  8. Harding, H., Zhang, Y. & Ron, D. Translation and protein folding are coupled by an endoplasmic reticulum resident kinase. Nature 397, 271– 274 (1999).
    Article CAS Google Scholar
  9. Munro, S. & Pelham, H. R. An Hsp70-like protein in the ER: identity with the 78 kDa glucose- regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291– 300 (1986).
    Article CAS Google Scholar
  10. Wei, J. & Hendershot, L. M. Characterization of the nucleotide binding properties and ATPase activity of recombinant hamster BiP purified from bacteria. J. Biol. Chem. 270, 26670 –26676 (1995).
    Article CAS Google Scholar
  11. Hebert, D. N., Simons, J. F., Peterson, J. R. & Helenius, A. Calnexin, calreticulin, and Bip/Kar2p in protein folding. Cold Spring Harb. Symp. Quant. Biol. 60, 405– 415 (1995).
    Article CAS Google Scholar
  12. Dorner, A., Wasley, L. & Kaufman, R. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 11, 1563– 1571 (1992).
    Article CAS Google Scholar
  13. Wang, et al. Signals from the stressed endoplasmic reticulum induce C/EBP homologous protein (CHOP/GADD153). Mol. Cell Biol. 16, 4273 –4280 (1996).
    Article CAS Google Scholar
  14. Shamu, C. E. & Walter, P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15, 3028– 3039 (1996).
    Article CAS Google Scholar
  15. Welihinda, A. A. & Kaufman, R. J. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and _trans_-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J. Biol. Chem. 271, 18181– 18187 (1996).
    Article CAS Google Scholar
  16. Langland, J. O. & Jacobs, B. L. Cytosolic double-stranded RNA-dependent protein kinase is likely a dimer of partially phosphorylated _M_r 66,000 subunits. J. Biol. Chem. 267 , 10729–10736 (1992).
    CAS PubMed Google Scholar
  17. Reinhard, C., Shamoon, B., Shyamala, V. & Williams, L. T. Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2. EMBO J. 16, 1080– 1092 (1997).
    Article CAS Google Scholar
  18. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351– 366 (1998).
    Article CAS Google Scholar
  19. Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 97, 553–564 (1999).
    Article CAS Google Scholar
  20. Liberek, K., Galitski, T. P., Zylicz, M. & Georgopoulos, C. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc. Natl Acad. Sci. USA 89, 3516–3520 (1992).
    Article CAS Google Scholar
  21. Gamer, J., Bujard, H. & Bukau, B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32 . Cell 69, 833–842 (1992).
    Article CAS Google Scholar
  22. Tomoyasu, T., Ogura, T., Tatsuta, T. & Bukau, B. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol. Microbiol. 30, 567–581 (1998).
    Article CAS Google Scholar
  23. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators . Genes Dev. 12, 3788–3796 (1998).
    Article CAS Google Scholar
  24. Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 ( 1998).
    Article CAS Google Scholar
  25. Straus, D. B., Walter, W. A. & Gross, C. A. The activity of sigma 32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev. 3, 2003–2010 (1989).
    Article CAS Google Scholar
  26. Kohno, K., Normington, K., Sambrook, J., Gething, M. J. & Mori, K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell Biol. 13, 877–890 (1993).
    Article CAS Google Scholar
  27. Freiden, P. J., Gaut, J. R. & Hendershot, L. M. Interconversion of three differentially modified and assembled forms of BiP. EMBO J. 11, 63–70 (1992).
    Article CAS Google Scholar
  28. Hendershot, L. M. et al. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Mol. Biol. Cell 6, 283–296 ( 1995).
    Article CAS Google Scholar
  29. Bertolotti, A. et al. EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol. Cell Biol. 18, 1489–1497 (1998).
    Article CAS Google Scholar

Download references