Cargo binding and regulatory sites in the tail of fungal conventional kinesin (original) (raw)

References

  1. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 ( 1996).
    Article CAS Google Scholar
  2. Vale, R. D. & Fletterick, R. The design plan of kinesin motors . Annu. Rev. Cell Dev. Biol. 13, 745– 777 (1997).
    Article CAS Google Scholar
  3. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).
    Article CAS Google Scholar
  4. Brady, S. T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75 (1985).
    Article CAS Google Scholar
  5. Scholey, J. M., Porter, M. E., Grissom, P. M. & McIntosh, J. R. Identification of kinesin in sea urchin eggs and evidence for its localization in the mitotic spindle. Nature 318, 483– 486 (1985).
    Article CAS Google Scholar
  6. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport . Science 279, 519–526 (1998).
    Article CAS Google Scholar
  7. Amos, L. A. Kinesin from pig brain studied by electron microscopy. J. Cell Sci. 87, 105–111 ( 1987).
    CAS PubMed Google Scholar
  8. Hirokawa, N. et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56, 867–878 (1989).
    Article CAS Google Scholar
  9. Diefenbach, R. J., Mackkay, J. P., Armati, P. J. & Cunningham, A. L. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663–16670 ( 1998).
    Article CAS Google Scholar
  10. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. B. Evidence that the head of kinesin is sufficient for force generation and motility in vitro. Science 249, 42–47 ( 1990).
    Article CAS Google Scholar
  11. Gindhart, J. G., Desai, C. J., Beushausen, S., Zinn, K. & Goldstein, L. S. B. Kinesin light chains are essential for axonal transport in Drosophila. J. Cell Biol. 141, 443–454 ( 1998).
    Article CAS Google Scholar
  12. Verhey, K. J. et al. Light-chain-dependent regulation of kinesin’s interaction with microtubules. J. Cell Biol. 143, 1053 –1066 (1998).
    Article CAS Google Scholar
  13. Rahman, A., Kamal, A., Roberts, E. A. & Goldstein, L. S. Defective kinesin heavy chain behavior in mouse kinesin light chain mutants . J. Cell Biol. 146, 1277– 1288 (1999).
    Article CAS Google Scholar
  14. Steinberg, G. & Schliwa, M. The Neurospora organelle motor: a distant relative of conventional kinesin with unconventional properties . Mol. Biol. Cell 6, 1605– 1618 (1995).
    Article CAS Google Scholar
  15. Lehmler, C. et al. Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J. 16, 3464–3473 (1997).
    Article CAS Google Scholar
  16. Steinberg, G. A kinesin-like mechanoenzyme from the zygomycete Syncephalastrum racemosum shows biochemical similarities with conventional kinesin from Neurospora crassa. Eur. J. Cell Biol. 73, 124– 131 (1997).
    CAS PubMed Google Scholar
  17. Wu, Q. et al. A fungal kinesin required for organelle motility, hyphal growth and morphogenesis. Mol. Biol. Cell 9, 89–101 (1998).
    Article CAS Google Scholar
  18. Woehlke, G., Ruby, A. K., Hart, C. L., Hom-Booher, N. & Vale, R. D. Microtubule interaction site of the kinesin motor . Cell 90, 207–216 (1997).
    Article CAS Google Scholar
  19. Kuznetsov, S. A., Vaisberg, Y. A., Rothwell, S. W., Murphy, D. B. & Gelfand, V. I. Isolation of a 45 kDa fragment from the kinesin heavy chain with enhanced ATPase and microtubule binding affinities. J. Biol. Chem. 264, 589– 595 (1989).
    CAS PubMed Google Scholar
  20. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778– 784 (1999).
    Article CAS Google Scholar
  21. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 ( 1997).
    Article CAS Google Scholar
  22. Henningsen, U. & Schliwa, M. Reversal in the direction of movement of a molecular motor. Nature 389, 93–96 (1997).
    Article CAS Google Scholar
  23. Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science 281, 1200– 1202 (1998).
    Article CAS Google Scholar
  24. Romberg, L., Pierce, D. W. & Vale, R. D. Role of the kinesin neck region in processive microtubule-based motility. J. Cell Biol. 140, 1407– 1416 (1998).
    Article CAS Google Scholar
  25. Grummt, M. et al. Importance of a flexible hinge near the motor domain in kinesin -driven motility. EMBO J. 17, 5536– 5542 (1998).
    Article CAS Google Scholar
  26. Stock, M. F. et al. Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999).
    Article CAS Google Scholar
  27. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin’s tail domain is an inhibitory regulator of the motor domain . Nature Cell Biol. 1, 288– 292 (1999).
    Article CAS Google Scholar
  28. Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol. 1, 293– 297 (1999).
    Article CAS Google Scholar
  29. Hackney, D. D., Levitt, J. D. & Suhan. J. Kinesin undergoes a 9S to 6S conformational transition. J. Biol. Chem. 267, 8696–8701 (1992).
    CAS PubMed Google Scholar
  30. Kirchner, J., Seiler, S., Fuchs, S., & Schliwa, M. Functional anatomy of the kinesin molecule in vivo. EMBO J. 18, 4404–4413 (1999).
    Article CAS Google Scholar
  31. Bloom, G. S. & Endow, S. A. Motor proteins 1: kinesins. Protein Profile 2, 105–171 (1995).
    Google Scholar
  32. Lane, J. & Allan, V. Microtubule-based membrane movement . Biochim. Biophys. Acta 1376, 27– 55 (1998).
    Article CAS Google Scholar
  33. Goldstein, L. S. B. With apologies to Sheherazade: tails of 1001 kinesin motors. Annu. Rev. Genet. 27, 319–351 (1993).
    Article CAS Google Scholar
  34. Skoufias, D. A., Cole, D. G., Wedaman, K. P. & Scholey, J. M. The carboxy-terminal domain of kinesin heavy chain is important for membrane binding. J. Biol. Chem. 269, 1477– 1485 (1994).
    CAS PubMed Google Scholar
  35. Pfister, K. K., Wagner, M. C., Stenoien, D. L., Brady, S. T. & Bloom, G. S. Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. J. Cell Biol. 108, 1453 –1463 (1989).
    Article CAS Google Scholar
  36. Hirokawa, N. et al. Kinesin associates with anterogradely transported membraneous organelles in vivo. J. Cell Biol. 114 , 295–302 (1991).
    Article CAS Google Scholar
  37. Wright, B. D. et al. Subcellular localization and sequence of sea urchin kinesin heavy chain — evidence for its association with membranes in the mitotic apparatus and interphase cytoplasm. J. Cell Biol. 113 , 817–833 (1991).
    Article CAS Google Scholar
  38. Seiler, S., Plamann, M. & Schliwa, M. Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr. Biol. 9, 779–785 ( 1999).
    Article CAS Google Scholar
  39. Berger, B. et al. Predicting coiled coils by use of pairwise residue correlations . Proc. Natl Acad. Sci. USA 92, 8259– 8263 (1995).
    Article CAS Google Scholar
  40. Jellali, A. et al. Structural and biochemical properties of kinesin heavy chain associated with rat brain mitochondria. Cell Motil. Cytoskeleton 28, 79–93 ( 1994).
    Article CAS Google Scholar
  41. Yu H., Toyoshima I., Steuer E. R. & Sheetz M. P. Kinesin and cytoplasmic dynein binding to brain microsomes. J. Biol. Chem. 267, 20457–20464 (1992).
  42. Schnapp, B. J., Reese, T. S. & Bechtold, R. Kinesin is bound with high affinity to squid axon organelles that move to the plus end of microtubules. J. Cell Biol. 119, 389–399 (1992).
    Article CAS Google Scholar
  43. Leopold, P. L., McDowall, A. W., Pfister, K. K., Bloom, G. S. & Brady, S. T. Association of kinesin with characterized membrane-bound organelles. Cell Motil. Cytoskeleton 23, 19–33 (1992).
    Article CAS Google Scholar
  44. Seiler, S., Nargang, F., Steinberg, G. & Schliwa, M. Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J. 16, 3025– 3034 (1997).
    Article CAS Google Scholar
  45. Stenoien, D. S. & Brady, S. T. Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 146, 1277–1288 (1997).
    Google Scholar
  46. Kirchner, J., Woehlke, G. & Schliwa, M. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal kinesins. Biol. Chem. 380, 915–921 (1999).
    Article CAS Google Scholar
  47. Lane, J. D. & Allan, V. J. Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development. Mol. Biol. Cell. 10, 1909–1922 (1999).
    Article CAS Google Scholar
  48. Tinsley, J. H., Minke, P. F., Bruno, K. S. & Plamann, M. p150 Glued, the largest subunit of the dynactin complex, is nonessential in Neurospora but required for nuclear distribution. Mol. Biol. Cell 7, 731–742 ( 1996).
    Article CAS Google Scholar
  49. Evan, G. I., Lewis, G. K., Ramsey, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human _cMyc_-proto-oncogene product . Mol. Cell. Biol. 5, 3610– 3616 (1985).
    Article CAS Google Scholar
  50. Huang, T. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in E. coli. Purification and kinetic characterization . J. Biol. Chem. 269, 16493– 16501 (1994).
    CAS PubMed Google Scholar

Download references