Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes (original) (raw)

Nature volume 350, pages 148–151 (1991)Cite this article

Abstract

ALTHOUGH it is widely accepted that the plastids of plants and algae originated as endosymbionts1, the details of this evolutionary process are unclear2'3. It has been proposed that in organisms whose plastids are surrounded by more than two membranes, the endosymbiont was a eukaryotic alga rather than a photosynthetic prokaryote4. The DNA-containing5 nucleomorph6 of cryptomonad algae appears to be the vestigial nucleus of such an algal endosymbiont7. Eukaryotic-type ribosomal RNA sequences have been localized to a nucleolus-like structure in the nucleomorph8. In support of the hypothesis that cryptomonads are evolutionary chimaeras of two distinct eukaryotic cells, we show here that Cryptomonas Φ contains two phylogenetically separate, nuclear-type small-subunit rRNA genes, both of which are transcriptionally active. We incorporate our rRNA sequence data into phylogenetic trees, from which we infer the evolutionary ancestry of the host and symbiont components of Cryptomonas Φ. Such trees do not support the thesis3 that chromophyte algae evolved directly from a cryp-tomonad-like ancestor.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Gray, M. W. Trends Genet. 5, 294–299 (1989).
    Article CAS Google Scholar
  2. Whatley, J. M. & Whatley, F. R. New Phytol. 87, 233–247 (1981).
    Article CAS Google Scholar
  3. Cavalier-Smith, T. Biol. J. Linn. Soc. 17, 289–306 (1982).
    Article Google Scholar
  4. Gibbs, S. P. Ann. N.Y. Acad. Sci. 391, 193–208 (1981).
    Article ADS Google Scholar
  5. Ludwig, M. & Gibbs, S. P. Protoplasma 127, 9–20 (1985).
    Article Google Scholar
  6. Greenwood, A. D., Griffiths, H. B. & Santore, U. J. Br. Phycol. J. 12, 119 (1977).
    Google Scholar
  7. Ludwig, M. & Gibbs, S. P. Ann. N.Y. Acad. Sci. 503, 198–211 (1987).
    Article ADS Google Scholar
  8. McFadden, G. I. J. Cell Sci. 95, 303–308 (1990).
    CAS Google Scholar
  9. Sogin, M. L. in PCR Protocols. A Guide to Methods and Applications (eds Innes, M. A. et al.) 307–314 (Academic, San Diego, 1990).
    Google Scholar
  10. Neefs, J.-M., Van de Peer, Y., Henriks, L. & De Wachter, R. Nucleic Acids Res. 18 (suppl.), 2237–2247 (1990).
    Article CAS Google Scholar
  11. Gray, M. W., Sankoff, D. & Cedergren, R. J. Nucleic Acids Res. 12, 5837–5852 (1984).
    Article CAS Google Scholar
  12. Dahlberg, A. E. Cell 57, 525–529 (1989).
    Article CAS Google Scholar
  13. Douglas, S. E. Curr. Genet. 14, 591–598 (1988).
    Article CAS Google Scholar
  14. Schnare, M. N., Heinonen, T. Y. K., Young, P. G. & Gray, M. W. J. biol. Chem. 261, 5187–5193 (1986).
    CAS PubMed Google Scholar
  15. Swofford, D. L. PAUP Version 3.0. Illinois Natural History Survey (Champagne, Illinois, 1989).
  16. Felsentein, J. PHYLIP Manual Version 3.3 (Herbarium, Univ. California, Berkeley, 1990).
  17. Saitou, N. & Nei, M. Molec. biol. Evol. 4, 406–425 (1987).
    CAS Google Scholar
  18. Gunderson, J. H., Elwood, H. J., Ingold, A., Kindle, K. & Sogin, M. L. Proc. natn. Acad. Sci. U.S.A. 84, 5823–5827 (1987).
    Article ADS CAS Google Scholar
  19. Bhattacharya, D., Elwood, H. J., Goff, L. J. & Sogin, M. L. J. Phycol. 26, 181–186 (1990).
    Article CAS Google Scholar
  20. Perasso, R., Baroin, A., Qu, L. H., Bachellerie, J. P. & Adoutte, A. Nature 339, 142–144 (1989).
    Article ADS CAS Google Scholar
  21. Cavalier-Smith, T. Prog. Phycol. Res. 4, 309–347 (1986).
    Google Scholar
  22. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
    Article ADS CAS Google Scholar
  23. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
    Article CAS Google Scholar
  24. Douglas, S. E. & Durnford, D. G. Plant molec. Biol. 13, 13–20 (1989).
    Article CAS Google Scholar
  25. Bird, C. J., Rice, E. L., Murphy, C. A., Liu, Q. Y. & Ragan, M. A. Nucleic Acids Res. 18, 4023–4024 (1990).
    Article CAS Google Scholar
  26. Hendriks, L. et al. System appl. Microbiol. 12, 223–229 (1989).
    Article CAS Google Scholar
  27. Kimura, M. J. molec. Evol. 16, 111–120 (1980).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Institute of Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
    Susan E. Douglas & Colleen A. Murphy
  2. Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
    David F. Spencer & Michael W. Gray

Authors

  1. Susan E. Douglas
    You can also search for this author inPubMed Google Scholar
  2. Colleen A. Murphy
    You can also search for this author inPubMed Google Scholar
  3. David F. Spencer
    You can also search for this author inPubMed Google Scholar
  4. Michael W. Gray
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Douglas, S., Murphy, C., Spencer, D. et al. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes.Nature 350, 148–151 (1991). https://doi.org/10.1038/350148a0

Download citation

This article is cited by