CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint (original) (raw)
References
Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma19, 28–43 (1966). ArticleCAS Google Scholar
Nicklas, R. B. The motor for poleward chromosome movement in anaphase is in or near the kinetochore . J. Cell Biol.109, 2245-2255 (1989). Article Google Scholar
Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol.110, 81–95 (1990). ArticleCAS Google Scholar
Hyman, A. A. & Mitchison, T. J. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature351, 206–211 ( 1991). ArticleCAS Google Scholar
Roos, U-P. Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. J. Cell Biol.54, 363 –385 (1976). CAS Google Scholar
Bajer, A. S. Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J. Cell Biol.93, 33– 48 (1982). ArticleCAS Google Scholar
Alexander, S. P. & Rieder, C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J. Cell Biol.113, 805– 815 (1991). ArticleCAS Google Scholar
Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol.122, 859– 875 (1993). ArticleCAS Google Scholar
Khodjakov, A. & Rieder, C. L. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome . J. Cell Biol.135, 315– 327 (1996). ArticleCAS Google Scholar
Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol.130, 941–948 (1995). ArticleCAS Google Scholar
Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell66, 519– 531 (1991). ArticleCAS Google Scholar
Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell66, 507–517 (1991). Google Scholar
Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature373, 630– 632 (1995). ArticleCAS Google Scholar
Zhang, D. & Nicklas, R. B. ‘Anaphase’ and cytokinesis in the absence of chromosomes. Nature382, 466–468 (1996). ArticleCAS Google Scholar
Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science274, 242– 246 (1996). ArticleCAS Google Scholar
Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science274, 246 –248 (1996). ArticleCAS Google Scholar
Taylor, S. S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol.142, 1–11 (1998). ArticleCAS Google Scholar
Martinez-Exposito, M. J., Kaplan, K. B., Copeland, J. & Sorger, P. K. Retention of the BUB3 checkpoint protein on lagging chromosomes. Proc. Natl Acad. Sci. USA96, 8493– 8498 (1999). ArticleCAS Google Scholar
Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell89, 727–735 (1997). ArticleCAS Google Scholar
Chan, G. K. T., Jablonski, S. A., Sudakin, V., Hittle, J. C. & Yen, T. J. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions and binds the cyclosome/APC. J. Cell Biol.146, 941–954 (1999). ArticleCAS Google Scholar
Wood, K. W., Sakowicz, R., Goldstein, L. S. B. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell91, 357– 366 (1997). ArticleCAS Google Scholar
Brown, K. D., Coulson, R. M., Yen, T. J. & Cleveland, D. W. Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J. Cell Biol.125, 1303– 1312 (1994). ArticleCAS Google Scholar
Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol.128, 107–115 (1995). ArticleCAS Google Scholar
Yen, T. J. et al. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J.10, 1245–1254 (1991). ArticleCAS Google Scholar
Duesbery, N. S. et al. CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II. Proc. Natl Acad. Sci. USA94, 9165– 9170 (1997). ArticleCAS Google Scholar
Schaar, B. T., Chan, G. K. T., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol.139 , 1373–1382 (1997). ArticleCAS Google Scholar
Chan, G. K. T., Schaar, B. T. & Yen, T. J. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1 . J. Cell Biol.143, 49– 63 (1998). ArticleCAS Google Scholar
Waters, J. C., Skibbens, R. V. & Salmon, E. D. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J. Cell Sci.109, 2823–2831 (1996). CASPubMed Google Scholar
Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature345, 266–268 ( 1990). ArticleCAS Google Scholar
Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis . Nature345, 263–265 (1990). ArticleCAS Google Scholar
Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol.128, 95–104 ( 1995). ArticleCAS Google Scholar
Yao, X., Anderson, K. L. & Cleveland, D. W. The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J. Cell Biol.139, 435–447 (1997). ArticleCAS Google Scholar
Rieder, C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK 1 cells . Chromosoma84, 145–158 (1981). ArticleCAS Google Scholar
Cassimeris, L., Rieder, C. L., Rupp, G. & Salmon, E. D. Stability of microtubule attachment to metaphase kinetochores in PtK1 cells. J. Cell Sci.96, 9–15 ( 1990). PubMed Google Scholar
Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol.142, 763–774 ( 1998). ArticleCAS Google Scholar
Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell87, 447– 458 (1996). ArticleCAS Google Scholar
Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. (submitted).
Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell84, 37–47 (1996). ArticleCAS Google Scholar
Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell96, 69–78 (1999). ArticleCAS Google Scholar
Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol.142, 787– 801 (1998). ArticleCAS Google Scholar
Vaisberg, E. A., Koonce, M. P. & McIntosh, J. R. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol.123, 849 –858 (1993). ArticleCAS Google Scholar
Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis . J. Cell Biol.132, 617– 633 (1996). ArticleCAS Google Scholar
Jablonski, S. A., Chan, G. K. T., Cooke, C. A., Earnshaw, W. C. & Yen, T. J. The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma107, 386–396 (1998). ArticleCAS Google Scholar
Caceres, A. & Kosik, K. S. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature343, 461–463 ( 1990). ArticleCAS Google Scholar
Brown, K. D., Wood, K. W. & Cleveland, D. W. The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J. Cell Sci.109, 961–969 (1996). CASPubMed Google Scholar
Kilmartin, J. V., Wright, B. & Milstein, C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol.93, 576–582 (1982). ArticleCAS Google Scholar
Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell Biol.5, 3610–3616 (1985). ArticleCAS Google Scholar
Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev.12, 1871 –1883 (1998). ArticleCAS Google Scholar