CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint (original) (raw)

References

  1. Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19, 28–43 (1966).
    Article CAS Google Scholar
  2. Nicklas, R. B. The motor for poleward chromosome movement in anaphase is in or near the kinetochore . J. Cell Biol. 109, 2245-2255 (1989).
    Article Google Scholar
  3. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990).
    Article CAS Google Scholar
  4. Hyman, A. A. & Mitchison, T. J. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature 351, 206–211 ( 1991).
    Article CAS Google Scholar
  5. Roos, U-P. Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. J. Cell Biol. 54, 363 –385 (1976).
    CAS Google Scholar
  6. Bajer, A. S. Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J. Cell Biol. 93, 33– 48 (1982).
    Article CAS Google Scholar
  7. Alexander, S. P. & Rieder, C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J. Cell Biol. 113, 805– 815 (1991).
    Article CAS Google Scholar
  8. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859– 875 (1993).
    Article CAS Google Scholar
  9. Khodjakov, A. & Rieder, C. L. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome . J. Cell Biol. 135, 315– 327 (1996).
    Article CAS Google Scholar
  10. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995).
    Article CAS Google Scholar
  11. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519– 531 (1991).
    Article CAS Google Scholar
  12. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).
    Google Scholar
  13. Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630– 632 (1995).
    Article CAS Google Scholar
  14. Zhang, D. & Nicklas, R. B. ‘Anaphase’ and cytokinesis in the absence of chromosomes. Nature 382, 466–468 (1996).
    Article CAS Google Scholar
  15. Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242– 246 (1996).
    Article CAS Google Scholar
  16. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246 –248 (1996).
    Article CAS Google Scholar
  17. Taylor, S. S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 142, 1–11 (1998).
    Article CAS Google Scholar
  18. Martinez-Exposito, M. J., Kaplan, K. B., Copeland, J. & Sorger, P. K. Retention of the BUB3 checkpoint protein on lagging chromosomes. Proc. Natl Acad. Sci. USA 96, 8493– 8498 (1999).
    Article CAS Google Scholar
  19. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).
    Article CAS Google Scholar
  20. Chan, G. K. T., Jablonski, S. A., Sudakin, V., Hittle, J. C. & Yen, T. J. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions and binds the cyclosome/APC. J. Cell Biol. 146, 941–954 (1999).
    Article CAS Google Scholar
  21. Wood, K. W., Sakowicz, R., Goldstein, L. S. B. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357– 366 (1997).
    Article CAS Google Scholar
  22. Brown, K. D., Coulson, R. M., Yen, T. J. & Cleveland, D. W. Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J. Cell Biol. 125, 1303– 1312 (1994).
    Article CAS Google Scholar
  23. Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol. 128, 107–115 (1995).
    Article CAS Google Scholar
  24. Yen, T. J. et al. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 10, 1245–1254 (1991).
    Article CAS Google Scholar
  25. Duesbery, N. S. et al. CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II. Proc. Natl Acad. Sci. USA 94, 9165– 9170 (1997).
    Article CAS Google Scholar
  26. Schaar, B. T., Chan, G. K. T., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139 , 1373–1382 (1997).
    Article CAS Google Scholar
  27. Chan, G. K. T., Schaar, B. T. & Yen, T. J. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1 . J. Cell Biol. 143, 49– 63 (1998).
    Article CAS Google Scholar
  28. Waters, J. C., Skibbens, R. V. & Salmon, E. D. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J. Cell Sci. 109, 2823–2831 (1996).
    CAS PubMed Google Scholar
  29. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 ( 1990).
    Article CAS Google Scholar
  30. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis . Nature 345, 263–265 (1990).
    Article CAS Google Scholar
  31. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 ( 1995).
    Article CAS Google Scholar
  32. Yao, X., Anderson, K. L. & Cleveland, D. W. The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J. Cell Biol. 139, 435–447 (1997).
    Article CAS Google Scholar
  33. Rieder, C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK 1 cells . Chromosoma 84, 145–158 (1981).
    Article CAS Google Scholar
  34. Cassimeris, L., Rieder, C. L., Rupp, G. & Salmon, E. D. Stability of microtubule attachment to metaphase kinetochores in PtK1 cells. J. Cell Sci. 96, 9–15 ( 1990).
    PubMed Google Scholar
  35. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 ( 1998).
    Article CAS Google Scholar
  36. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447– 458 (1996).
    Article CAS Google Scholar
  37. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. (submitted).
  38. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996).
    Article CAS Google Scholar
  39. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).
    Article CAS Google Scholar
  40. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787– 801 (1998).
    Article CAS Google Scholar
  41. Vaisberg, E. A., Koonce, M. P. & McIntosh, J. R. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123, 849 –858 (1993).
    Article CAS Google Scholar
  42. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis . J. Cell Biol. 132, 617– 633 (1996).
    Article CAS Google Scholar
  43. Jablonski, S. A., Chan, G. K. T., Cooke, C. A., Earnshaw, W. C. & Yen, T. J. The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma 107, 386–396 (1998).
    Article CAS Google Scholar
  44. Caceres, A. & Kosik, K. S. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343, 461–463 ( 1990).
    Article CAS Google Scholar
  45. Brown, K. D., Wood, K. W. & Cleveland, D. W. The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J. Cell Sci. 109, 961–969 (1996).
    CAS PubMed Google Scholar
  46. Kilmartin, J. V., Wright, B. & Milstein, C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93, 576–582 (1982).
    Article CAS Google Scholar
  47. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell Biol. 5, 3610–3616 (1985).
    Article CAS Google Scholar
  48. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871 –1883 (1998).
    Article CAS Google Scholar

Download references