A chromatin remodelling complex involved in transcription and DNA processing (original) (raw)

References

  1. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 ( 1999).
    Article CAS Google Scholar
  2. Luger, K. & Richmond, T. J. DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 8, 33– 40 (1998).
    Article CAS Google Scholar
  3. Eisen, J. A., Sweder, K. S. & Hanawalt, P. C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).
    Article CAS Google Scholar
  4. Peterson, C. L. Multiple SWItches to turn on chromatin? Curr. Opin. Genet. Dev. 6, 171–175 ( 1996).
    Article CAS Google Scholar
  5. Armstrong, J. A. & Emerson, B. M. Transcription of chromatin: these are complex times. Curr. Opin. Genet. Dev. 8, 165–172 ( 1998).
    Article CAS Google Scholar
  6. Kadonaga, J. T. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92, 307 –313 (1998).
    Article CAS Google Scholar
  7. Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 ( 1998).
    Article CAS Google Scholar
  8. Ebbert, R., Birkmann, A. & Schüller, H. J. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol. Microbiol. 32, 741– 751 (1999).
    Article CAS Google Scholar
  9. Qiu, X. B. et al. An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J. Biol. Chem. 273, 27786– 27793 (1998).
    Article CAS Google Scholar
  10. Kanemaki, M. et al. Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochem. Biophys. Res. Commun. 235, 64–68 (1997).
    Article CAS Google Scholar
  11. Kanemaki, M. et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J. Biol. Chem. 274, 22437–22444 ( 1999).
    Article CAS Google Scholar
  12. Tsukiyama, T., Daniel, C., Tamkun, J. & Wu, C. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodelling factor. Cell 83, 1021–1026 (1995).
    Article CAS Google Scholar
  13. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodelling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686– 697 (1999).
    Article CAS Google Scholar
  14. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 ( 1998).
    Article CAS Google Scholar
  15. Cairns, B. R., Erdjument-Bromage, H., Tempst, P., Winston, F. & Kornberg, R. D. Two actin-related proteins are shared functional components of the chromatin-remodelling complexes RSC and SWI/SNF. Mol. Cell 2, 639– 651 (1998).
    Article CAS Google Scholar
  16. Galarneau, L. et al. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5, 927–937 (2000).
    Article CAS Google Scholar
  17. West, S. C. Processing of recombination intermediates by the RuvABC proteins. Annu. Rev. Genet. 31, 213–244 (1997).
    Article CAS Google Scholar
  18. Wood, M. A., McMahon, S. B. & Cole, M. D. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol. Cell 5, 321–330 (2000).
    Article CAS Google Scholar
  19. Ikura, T. et al. Link of TIP60 histone acetylase to DNA repair and apoptosis. Nature (submitted).
  20. Côté, J., Quinn, J., Workman, J. L. & Peterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53– 60 (1994).
    Article ADS Google Scholar
  21. Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodelling complex. Cell 87, 1249–1260 (1996).
    Article CAS Google Scholar
  22. Mizuguchi, G., Tsukiyama, T., Wisniewski, J. & Wu, C. Role of nucleosome remodelling factor NURF in transcriptional activation of chromatin. Mol. Cell 1, 141–150 (1997).
    Article CAS Google Scholar
  23. Weinert, T. A. & Hartwell, L. H. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol. Cell. Biol. 10, 6554–6564 (1990).
    CAS PubMed PubMed Central Google Scholar
  24. Huang, M. & Elledge, S. J. Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 6105 –6113 (1997).
    Article CAS Google Scholar
  25. Haber, J. E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 ( 1999).
    Article CAS Google Scholar
  26. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998).
    Article CAS Google Scholar
  27. Gdula, D. A., Sandaltzopoulos, R., Tsukiyama, T., Ossipow, V. & Wu, C. Inorganic pyrophosphatase is a component of the Drosophila nucleosome remodelling factor complex. Genes Dev. 12, 3206–3216 (1998).
    Article CAS Google Scholar
  28. Hansen, S. K. & Tjian, R. TAFs and TFIIA mediate differential utilization of the tandem Adh promoters. Cell 82, 565–575 (1995).
    Article CAS Google Scholar
  29. Tsukiyama, T. & Wu, C. Purification and properties of an ATP-dependent nucleosome remodelling factor. Cell 83, 1011–1020 (1995).
    Article CAS Google Scholar
  30. Park, J. S., Choi, E., Lee, S. H., Lee, C. & Seo, Y. S. A DNA helicase from Schizosaccharomyces pombe stimulated by single-stranded DNA-binding protein at low ATP concentration. J. Biol. Chem. 272, 18910–18919 (1997).
    Article CAS Google Scholar

Download references