Progression of autoimmune diabetes driven by avidity maturation of a T-cell population (original) (raw)

References

  1. Delovitch, T. & Singh, B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune disregulation gets the NOD. Immunity 7, 727–738 ( 1997).
    Article CAS Google Scholar
  2. Anderson, B., Park, B. J., Verdaguer, J., Amrani, A. & Santamaria, P. Prevalent CD8+ T cell response against one peptide/MHC complex in autoimmune diabetes. Proc. Natl Acad. Sci. USA 96, 9311– 9316 (1999).
    Article ADS CAS Google Scholar
  3. Nagata, M., Santamaria, P., Kawamura, T., Utsugi, T. & Yoon, J.-W. Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta cells in NOD mice. J. Immunol. 152, 2042–2050 (1994).
    CAS PubMed Google Scholar
  4. Katz, J., Benoist, C. & Mathis, D. Major histocompatibility complex class I molecules are required for the generation of insulitis in non-obese diabetic mice. Eur. J. Immunol. 23, 3358–3360 (1993).
    Article CAS Google Scholar
  5. Wicker, L. et al. β2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 43, 500– 504 (1994).
    Article CAS Google Scholar
  6. Serreze, D., Leiter, E., Christianson, G., Greiner, D. & Roopenian, D. Major histocompatibility complex class I-deficient NOD.β1mnull mice are diabetes and insulitis resistant. Diabetes 43, 505– 508 (1994).
    Article CAS Google Scholar
  7. Verdaguer, J. et al. Acceleration of spontaneous diabetes in TCRβ-transgenic nonobese diabetic mice by beta cell-cytotoxic CD8+ T cells expressing identical endogenous TCRα chains. J. Immunol. 157, 4726–4735 (1996).
    CAS PubMed Google Scholar
  8. Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med. 186, 1663– 1676 (1997).
    Article CAS Google Scholar
  9. DiLorenzo, T. et al. Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use prevalent T cell receptor α chain gene rearrangement. Proc. Natl Acad. Sci. USA 95, 12538– 12543 (1998).
    Article ADS CAS Google Scholar
  10. Santamaria, P. et al. Beta cell cytotoxic CD8+ T cells from non-obese diabetic mice use highly homologous T cell receptor alpha chain CDR3 sequences. J. Immunol. 154, 2494–2503 (1995).
    CAS PubMed Google Scholar
  11. Rammensee, H. G., Friede, T. & Stevanoviic, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).
    Article CAS Google Scholar
  12. Wong, S. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nature Med. 5, 1026–1031 ( 1999).
    Article CAS Google Scholar
  13. Savage, P. A., Boniface, J. J. & Davis, M. M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485-492 (1999).
    Article Google Scholar
  14. Abiru, N. & Eisenbarth, G. Autoantibodies and autoantigens in type 1 diabetes: role in pathogenesis, prediction and prevention. Can. J. Diab. Care 23, 59–65 (1999).
    Google Scholar
  15. Kaufman, D. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366, 69–72 (1993).
    Article ADS CAS Google Scholar
  16. Tisch, R. et al. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366, 72–75 (1993).
    Article ADS CAS Google Scholar
  17. Wegmann, D. The immune response to islet in experimental diabetes and insulin-dependent diabetes mellitus. Curr. Opin. Immunol. 8, 860–864 (1996).
    Article CAS Google Scholar
  18. Alam, S. et al. T-cell receptor affinity and thymocyte positive selection. Nature 381, 616–620 ( 1996).
    Article ADS CAS Google Scholar
  19. Kersh, G., Kersh, E., Fremont, D. & Allen, P. High and low potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9, 817– 826 (1998).
    Article CAS Google Scholar
  20. Lyons, D. et al. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5, 53–61 (1996).
    Article CAS Google Scholar
  21. Matsui, K., Boniface, J., Steffner, P., Reay, P. & Davis, M. Kinetics of T-cell receptor binding to peptide/I-Ak complexes:correlation of the dissociation rate with T-cell responsiveness. Proc. Natl Acad. Sci. USA 91, 12862–12866 (1994).
    Article ADS CAS Google Scholar
  22. Monks, C., Freiberg, B., Kupfer, H., Sciaky, N. & Kupfer, A. Three dimensional segregation of supramolecular activation clusters in T-cells. Nature 395, 82– 86 (1998).
    Article ADS CAS Google Scholar
  23. Reich, Z. et al. Ligand-specific oligomerization of T-cell receptor molecules. Nature 387, 617–620 (1997).
    Article ADS CAS Google Scholar
  24. Altman, J. et al. Direct visualization and phenotypic analysis of virus-specific T lymphocytes in HIV-infected individuals. Science 274, 94–96 (1996).
    Article ADS CAS Google Scholar

Download references