An intact HDM2 RING-finger domain is required for nuclear exclusion of p53 (original) (raw)

References

  1. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).
    Article CAS Google Scholar
  2. Lin, J., Chen, J., Elenbaas, B. & Levine, A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).
    Article CAS Google Scholar
  3. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase for tumor suppressor p53. FEBS Lett. 420, 25– 27 (1997).
    Article CAS Google Scholar
  4. Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T. & Levine, A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).
    Article CAS Google Scholar
  5. Tao, W. & Levine, A. J. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc. Natl Acad. Sci. USA 96, 3077– 3080 (1999).
    Article CAS Google Scholar
  6. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).
    Article CAS Google Scholar
  7. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308– 311 (1997).
    Article CAS Google Scholar
  8. Ossareh-Nazari, B., Bachelerie, F. & Dargemont, C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278, 141– 144 (1997).
    Article CAS Google Scholar
  9. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell Biol. 18, 7288– 7293 (1998).
    Article CAS Google Scholar
  10. Middeler, G. et al. The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited. Oncogene 14, 1407–1417 ( 1997).
    Article CAS Google Scholar
  11. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking . EMBO J. 18, 1660–1672 (1999).
    Article CAS Google Scholar
  12. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296 –299 (1997).
    Article CAS Google Scholar
  13. Kubbutat, M. H., Ludwig, R. L., Ashcroft, M. & Vousden, K. H. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol. Cell Biol. 18, 5690–5698 (1998).
    Article CAS Google Scholar
  14. Marston, N. J., Jenkins, J. R. & Vousden, K. H. Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene 10, 1709–1715 (1995).
    CAS Google Scholar
  15. Elenbaas, B., Dobbelstein, M., Roth, J., Shenk, T. & Levine, A. J. The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol. Med. 2, 439–451 (1996).
    Article CAS Google Scholar
  16. Tanimura, S. et al. MDM2 Interacts with MDMX through their RING finger domains . FEBS Lett. 447, 5–9 (1999).
    Article CAS Google Scholar
  17. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).
    Article CAS Google Scholar
  18. Waldman, T., Kinzler, K. W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187– 5190 (1995).
    CAS Google Scholar
  19. Chowdary, D. R., Dermody, J. J., Jha, K. K. & Ozer, H. L. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway . Mol. Cell Biol. 14, 1997– 2003 (1994).
    Article CAS Google Scholar
  20. Marechal, V., Elenbaas, B., Piette, J., Nicolas, J. C. & Levine, A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell Biol. 14, 7414–7420 (1994).
    Article CAS Google Scholar
  21. Moy, T. & Silver, P. A. Nuclear export of the small ribosomal subunit requires the Ran-GTPase cycle and certain nucleoporins. Genes Dev. 13, 2118–2133 (1999).
    Article CAS Google Scholar
  22. Brooks, P. et al. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem. J. 346, 155–161 (2000).
    Article CAS Google Scholar
  23. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657– 661 (1999).
    Article CAS Google Scholar
  24. Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFgrr and Rbx1. Science 284, 662–665 (1999).
    Article CAS Google Scholar
  25. Zaika, A., Marchenko, N. & Moll, U. M. Cytoplasmically ‘sequestered’ wild type p53 protein is resistant to Mdm2-mediated degradation. J. Biol. Chem. 274, 27474–27480 ( 1999).
    Article CAS Google Scholar
  26. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 ( 1998).
    Article CAS Google Scholar
  27. Hicke, L. Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J. 11, 1215– 1226 (1997).
    Article CAS Google Scholar
  28. Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18, 6462– 6471 (1999).
    Article CAS Google Scholar
  29. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455– 6461 (1999).
    Article CAS Google Scholar
  30. Lohrum, M. A. E., Ashcroft, M., Kubbutat, M. H. G. & Vousden, K. H. Identification of a cryptic nucleolar-localization signal in MDM2. Nature Cell Biol. 2, 179–181 (2000).
    Article CAS Google Scholar
  31. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20– 26 (1999).
    Article CAS Google Scholar
  32. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579– 591 (1999).
    Article CAS Google Scholar
  33. Honda, R. & Yasuda, H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22–27 ( 1999).
    Article CAS Google Scholar

Download references