Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase (original) (raw)

References

  1. Howe, A., Aplin, A. E., Alahari, S. K. & Juliano, R. L. Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10, 220–231 ( 1998).
    Article CAS Google Scholar
  2. Assoian, R. K. & Zhu, X. Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr. Opin. Cell Biol. 9, 93–98 (1997).
    Article CAS Google Scholar
  3. Schwartz, M. A. Integrins, oncogenes, and anchorage independence. J. Cell Biol. 139, 575–578 ( 1997).
    Article CAS Google Scholar
  4. Widmann, C., Gibson, S., Jarpe, M. B. & Johnson, G. L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human . Physiol. Rev. 79, 143– 180 (1999).
    Article CAS Google Scholar
  5. Miyamoto, S., Teramoto, H., Gutkind, J. S. & Yamada, K. M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135, 1633–1642 (1996).
    Article CAS Google Scholar
  6. Cybulsky, A. V. & McTavish, A. J. Extracellular matrix is required for MAP kinase activation and proliferation of rat glomerular epithelial cells. Biochem. Biophys. Res. Commun. 231 , 160–166 (1997).
    Article CAS Google Scholar
  7. Lin, T. H., Chen, Q., Howe, A. & Juliano, R. L. Cell anchorage permits efficient signal transduction between ras and its downstream kinases . J. Biol. Chem. 272, 8849– 8852 (1997).
    Article CAS Google Scholar
  8. Renshaw, M. W., Ren, X. D. & Schwartz, M. A. Growth factor activation of MAP kinase requires cell adhesion. EMBO J. 16, 5592– 5599 (1997).
    Article CAS Google Scholar
  9. Graves, L. M. & Lawrence, J. C. Jr, Insulin, growth factors, and cAMP: antagonism in the signal transduction pathways. Trends Endocrinol. Metabol. 7, 43– 50 (1996).
    Article CAS Google Scholar
  10. Cho-Chung, Y. S., Pepe, S., Clair, T., Budillon, A. & Nesterova, M. cAMP-dependent protein kinase: role in normal and malignant growth. Crit. Rev. Oncol. Hematol. 21, 33 –61 (1995).
    Article CAS Google Scholar
  11. Roger, P. P., Reuse, S., Maenhaut, C. & Dumont, J. E. Multiple facets of the modulation of growth by cAMP. Vitam. Horm. 51 , 59–191 (1995).
    Article CAS Google Scholar
  12. Schoenwaelder, S. M. & Burridge, K. Bidirectional signaling between the cytoskeleton and integrins. Curr. Opin. Cell Biol. 11, 274–286 ( 1999).
    Article CAS Google Scholar
  13. Aplin, A. E. & Juliano, R. L. Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J. Cell Sci. 112, 695–706 ( 1999).
    CAS Google Scholar
  14. Tapon, N. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9, 86–92 (1997 ).
    Article CAS Google Scholar
  15. Knaus, U. G. & Bokoch, G. M. The p21Rac/Cdc42-activated kinases (PAKs). Int. J. Biochem. Cell Biol. 30, 857–862 (1998).
    Article CAS Google Scholar
  16. King, A. J. et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396, 180–183 (1998).
    Article CAS Google Scholar
  17. Frost, J. A. et al. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16, 6426 –6438 (1997).
    Article CAS Google Scholar
  18. Howe, D. G. & McCarthy, K. D. A dicistronic retroviral vector and culture model for analysis of neuron-Schwann cell interactions. J. Neurosci. Methods 83, 133–142 (1998).
    Article CAS Google Scholar
  19. McDonald, R. A., Matthews, R. P., Idzerda, R. L. & McKnight, G. S. Basal expression of the cystic fibrosis transmembrane conductance regulator gene is dependent on protein kinase A activity. Proc. Natl Acad. Sci. USA 92, 7560–7564 ( 1995).
    Article CAS Google Scholar
  20. Day, R. N., Walder, J. A. & Maurer, R. A. A protein kinase inhibitor gene reduces both basal and multihormone-stimulated prolactin gene transcription. J. Biol. Chem. 264, 431–436 ( 1989).
    CAS Google Scholar
  21. Fong, J. H. & Ingber, D. E. Modulation of adhesion-dependent cAMP signaling by echistatin and alendronate. Biochem. Biophys. Res. Commun. 221, 19–24 (1996).
    Article CAS Google Scholar
  22. O'Connor, K. L., Shaw, L. M. & Mercurio, A. M. Release of cAMP gating by the alpha6beta4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells. J. Cell Biol. 143, 1749– 1760 (1998).
    Article CAS Google Scholar
  23. He, Y. & Grinnell, F. Stress relaxation of fibroblasts activates a cyclic AMP signaling pathway. J. Cell Biol. 126, 457–464 (1994).
    Article CAS Google Scholar
  24. Aplin, A. E., Howe, A. K. & Juliano, R. L. Cell adhesion molecules, signal transduction, and cell growth. Curr. Opin. Cell Biol. 11, 737–744 (1999).
    Article CAS Google Scholar
  25. Vilgrain, I., Chinn, A., Gaillard, I., Chambaz, E. M. & Feige, J. J. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone. Biochem. J. 332, 533– 540 (1998).
    Article CAS Google Scholar
  26. Han, J. D. & Rubin, C. S. Regulation of cytoskeleton organization and paxillin dephosphorylation by cAMP. Studies on murine Y1 adrenal cells . J. Biol. Chem. 271, 29211– 29215 (1996).
    Article CAS Google Scholar
  27. Takahashi, T., Kawahara, Y., Okuda, M. & Yokoyama, M. Increasing cAMP antagonizes hypertrophic response to angiotensin II without affecting Ras and MAP kinase activation in vascular smooth muscle cells. FEBS Lett. 397, 89–92 ( 1996).
    Article CAS Google Scholar
  28. Schoenwaelder, S. M. & Burridge, K. Evidence for a calpeptin-sensitive protein-tyrosine phosphatase upstream of the small GTPase Rho. A novel role for the calpain inhibitor calpeptin in the inhibition of protein-tyrosine phosphatases. J. Biol. Chem. 274, 14359–14367 (1999).
    Article CAS Google Scholar
  29. Padmanabhan, J., Clayton, D. & Shelanski, M. L. Dibutyryl cyclic AMP-induced process formation in astrocytes is associated with a decrease in tyrosine phosphorylation of focal adhesion kinase and paxillin. J. Neurobiol. 39, 407–422 (1999).
    Article CAS Google Scholar
  30. Troyer, D. A., Bouton, A., Bedolla, R. & Padilla, R. Tyrosine phosphorylation of focal adhesion kinase (p125FAK): regulation by cAMP and thrombin in mesangial cells. J. Am. Soc. Nephrol. 7, 415– 423 (1996).
    CAS Google Scholar
  31. Aplin, A. E., Howe, A., Alahari, S. K. & Juliano, R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197–263 ( 1998).
    CAS Google Scholar
  32. Renshaw, M. W., Price, L. S. & Schwartz, M. A. Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase. J. Cell Biol. 147, 611–618 ( 1999).
    Article CAS Google Scholar
  33. Tang, Y., Yu, J. & Field, J. Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol. Cell Biol. 19, 1881–1891 (1999).
    Article CAS Google Scholar
  34. Tang, Y. et al. Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol. Cell Biol. 17, 4454– 4464 (1997).
    Article CAS Google Scholar
  35. del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK . EMBO J. 19, 2008–2014 (2000).
    Article CAS Google Scholar
  36. Faure, S. et al. Control of G2/M transition in Xenopus by a member of the p21-activated kinase (PAK) family: a link between protein kinase A and PAK signaling pathways? J. Biol. Chem. 274, 3573–3579 (1999).
    Article CAS Google Scholar
  37. Chung, C. Y. & Firtel, R. A. PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J. Cell Biol. 147, 559–576 ( 1999).
    Article CAS Google Scholar
  38. Zhou, T. H. et al. Identification of a human brain-specific isoform of mammalian STE20-like kinase 3 that is regulated by cAMP-dependent protein kinase. J. Biol. Chem. 275, 2513–2519 (2000).
    Article CAS Google Scholar
  39. Zenke, F. T., King, C. C., Bohl, B. P. & Bokoch, G. M. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 274, 32565–32573 (1999).
    Article CAS Google Scholar
  40. Westphal, R. S., Coffee, R. L. Jr, Marotta, A., Pelech, S. L. & Wadzinski, B. E. Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J. Biol. Chem. 274, 687–692 ( 1999).
    Article CAS Google Scholar
  41. Turner, C. E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).
    Article CAS Google Scholar
  42. McCarty, J. H. The Nck SH2/SH3 adaptor protein: a regulator of multiple intracellular signal transduction events. Bioessays 20, 913– 921 (1998).
    Article CAS Google Scholar
  43. Whitmarsh, A. J. & Davis, R. J. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals . Trends Biochem. Sci. 23, 481– 485 (1998).
    Article CAS Google Scholar
  44. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075– 2080 (1997).
    Article CAS Google Scholar
  45. Holt, M. R., Critchley, D. R. & Brindle, N. P. The focal adhesion phosphoprotein, VASP. Int. J. Biochem. Cell Biol. 30, 307– 311 (1998).
    Article CAS Google Scholar
  46. Dong, J. M., Leung, T., Manser, E. & Lim, L. cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKalpha. J. Biol. Chem. 273, 22554– 22562 (1998).
    Article CAS Google Scholar
  47. Ohta, Y., Akiyama, T., Nishida, E. & Sakai, H. Protein kinase C and cAMP-dependent protein kinase induce opposite effects on actin polymerizability . FEBS Lett. 222, 305–310 (1987).
    Article CAS Google Scholar
  48. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).
    Article CAS Google Scholar
  49. Howe, A. K. & Juliano, R. L. Distinct mechanisms mediate the initial and sustained phases of integrin-mediated activation of the Raf/MEK/mitogen-activated protein kinase cascade. J. Biol. Chem. 273, 27268–27274 (1998).
    Article CAS Google Scholar
  50. Graves, L. M. et al. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc. Natl Acad. Sci. USA 90, 10300 –10304 (1993).
    Article CAS Google Scholar
  51. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M. & Schwartz, M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79, 507 –513 (1994).
    Article CAS Google Scholar
  52. Boyle, W. J., van der Geer, P. & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201, 110–149 (1991).
    Article CAS Google Scholar

Download references