Hoyt, M. A. & Geiser, J. R. Genetic analysis of the mitotic spindle. Annu. Rev. Genet.30, 7– 33 (1996). ArticleCAS Google Scholar
McIntosh, J. R. & McDonald, K. L. The mitotic spindle. Sci. Am.261, 48– 56 (1989). ArticleCAS Google Scholar
Inoue, S. & Sato, H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J. Gen. Physiol.50 (Suppl.), 259–292 (1967). Article Google Scholar
Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature312, 237– 242 (1984). ArticleADSCAS Google Scholar
Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell6, 1619–1640 ( 1995). ArticleCAS Google Scholar
McIntosh, J. R., Hepler, P. K. & Van Wie, D. G. Model for mitosis. Nature224, 659–663 (1969). ArticleADS Google Scholar
McDonald, K. L., Edwards, M. K. & McIntosh, J. R. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. Evidence for specific interactions between antiparallel microtubules. J. Cell Biol.83, 443–461 (1979). ArticleCAS Google Scholar
Vale, R. D. & Fletterick, R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol.13, 745 –777 (1997). ArticleCAS Google Scholar
Holzbaur, E. L. & Vallee, R. B. DYNEINS: molecular structure and cellular function. Annu. Rev. Cell Biol.10, 339–372 (1994). ArticleCAS Google Scholar
Enos, A. P. & Morris, N. R. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell60, 1019–1027 ( 1990). ArticleCAS Google Scholar
Meluh, P. B. & Rose, M. D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell60, 1029– 1041 (1990); erratum ibid61, 548. ArticleCAS Google Scholar
Cole, D. G., Saxton, W. M., Sheehan, K. B. & Scholey, J. M. A “slow” homotetrameric kinesin-related motor protein purified from Drosophila embryos. J. Biol. Chem.269, 22913–22916 (1994). CASPubMedPubMed Central Google Scholar
Gordon, D. M. & Roof, D. M. The kinesin-related protein Kip1p of Saccharomyces cerevisiae is bipolar. J. Biol. Chem.274, 28779–28786 (1999). ArticleCAS Google Scholar
Sharp, D. J. et al. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J. Cell Biol.144, 125–138 (1999). ArticleCAS Google Scholar
Hagan, I. & Yanagida, M. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature347 , 563-566 (1990). ArticleADS Google Scholar
Hoyt, M. A., He, L., Loo, K. K. & Saunders, W. S. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol.118, 109– 120 (1992). ArticleCAS Google Scholar
Roof, D. M., Meluh, P. B. & Rose, M. D. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell Biol.118, 95–108 (1992). ArticleCAS Google Scholar
Sawin, K. E., LeGuellec, K., Philippe, M. & Mitchison, T. J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature359, 540–543 ( 1992). ArticleADSCAS Google Scholar
Heck, M. M. et al. The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J. Cell Biol.123, 665– 679 (1993). ArticleCAS Google Scholar
Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell83, 1159– 1169 (1995). ArticleCAS Google Scholar
Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W. & Scholey, J. M. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature Cell Biol.1, 51–54 (1999 ). ArticleCAS Google Scholar
Huxley, H. E. Sliding filaments and molecular motile systems. J. Biol. Chem.265, 8347–8350 ( 1990). CASPubMed Google Scholar
Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem.268, 9005–9013 ( 1993). CAS Google Scholar
Kuriyama, R. et al. Characterization of a minus end-directed kinesin-like motor protein from cultured mammalian cells. J. Cell Biol.129, 1049–1059 (1995). ArticleCAS Google Scholar
Pidoux, A. L., LeDizet, M. & Cande, W. Z. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. Mol. Biol. Cell7, 1639–1655 (1996). ArticleCAS Google Scholar
Karabay, A. & Walker, R. A. Identification of microtubule binding sites in the Ncd tail domain. Biochemistry38, 1838–1849 (1999). ArticleCAS Google Scholar
Narasimhulu, S. B. & Reddy, A. S. Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell10, 957– 965 (1998). ArticleCAS Google Scholar
Kuriyama, R. et al. Heterogeneity and microtubule interaction of the CHO1 antigen, a mitosis-specific kinesin-like protein. Analysis of subdomains expressed in insect sf9 cells. J. Cell Sci.107, 3485 –3499 (1994). CASPubMed Google Scholar
Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA92, 1634– 1638 (1995). ArticleADSCAS Google Scholar
McDonald, H. B., Stewart, R. J. & Goldstein, L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell63, 1159–1165 (1990). ArticleCAS Google Scholar
Nislow, C., Lombillo, V. A., Kuriyama, R. & McIntosh, J. R. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature359, 543–547 (1992). ArticleADSCAS Google Scholar
Verde, F., Berrez, J. M., Antony, C. & Karsenti, E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol.112, 1177–1187 (1991). ArticleCAS Google Scholar
Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell11, 241– 253 (2000). ArticleCAS Google Scholar
Adams, R. R., Tavares, A. A., Salzberg, A., Bellen, H. J. & Glover, D. M. pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev.12, 1483– 1494 (1998). ArticleCAS Google Scholar
Raich, W. B., Moran, A. N., Rothman, J. H. & Hardin, J. Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol. Biol. Cell9, 2037–2049 (1998). ArticleCAS Google Scholar
Sharp, D. J., Rogers, G. C. & Scholey, J. M. Roles of motor proteins in building microtubule-based structures: a basic principle of cellular design. Biochim. Biophys. Acta1496, 128–141 ( 2000). ArticleCAS Google Scholar
Yeh, E., Skibbens, R. V., Cheng, J. W., Salmon, E. D. & Bloom, K. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol.130, 687–700 (1995). ArticleCAS Google Scholar
Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & De Mey, J. R. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol.8, 541–4 (1998 ). ArticleCAS Google Scholar
O'Connell, C. B. & Wang, Y. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell11, 1765– 1764 (2000). ArticleCAS Google Scholar
Holleran, E. A., Tokito, M. K., Karki, S. & Holzbaur, E. L. Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol.135, 1815–1829 (1996). ArticleCAS Google Scholar
Merdes, A. & Cleveland, D. W. Pathways of spindle pole formation: different mechanisms; conserved components. J. Cell Biol.138, 953–956 (1997). ArticleCAS Google Scholar
Matthies, H. J., McDonald, H. B., Goldstein, L. S. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol.134, 455–464 (1996). ArticleCAS Google Scholar
Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature382, 420–425 (1996). ArticleADSCAS Google Scholar
Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol.8, 310–8 (1998). ArticleCAS Google Scholar
Hyman, A. A. & Mitchison, T. J. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature351, 206–211 ( 1991). ArticleADSCAS Google Scholar
Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature359, 536– 539 (1992). ArticleADSCAS Google Scholar
Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature345, 266–268 ( 1990). ArticleADSCAS Google Scholar
Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature345, 263–265 (1990). ArticleADSCAS Google Scholar
Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell91, 357– 366 (1997). ArticleCAS Google Scholar
Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol.142, 763–774 ( 1998). ArticleCAS Google Scholar
Bowman, A. B. et al. Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J. Cell Biol.146, 165–180 (1999). CASPubMedPubMed Central Google Scholar
Lee, S., Wisniewski, J. C., Dentler, W. L. & Asai, D. J. Gene knockouts reveal separate functions for two cytoplasmic dyneins in Tetrahymena thermophila. Mol. Biol. Cell10, 771–784 (1999). ArticleCAS Google Scholar
Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol.124, 223– 233 (1994). ArticleCAS Google Scholar
Wang, S. Z. & Adler, R. Chromokinesin: a DNA-binding, kinesin-like nuclear protein. J. Cell Biol.128, 761– 768 (1995). ArticleCAS Google Scholar
Molina, I. et al. A chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila. J. Cell Biol.139, 1361–1371 (1997). ArticleCAS Google Scholar
Ruden, D. M., Cui, W., Sollars, V. & Alterman, M. A Drosophila kinesin-like protein, Klp38B, functions during meiosis, mitosis, and segmentation. Dev. Biol.191, 284– 296 (1997). ArticleCAS Google Scholar
Alphey, L. et al. KLP38B: a mitotic kinesin-related protein that binds PP1. J. Cell Biol.138, 395– 409 (1997). ArticleCAS Google Scholar
Tokai, N. et al. Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. Embo J15, 457-467 (1996). Article Google Scholar
Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol.128, 107– 115 (1995). ArticleCAS Google Scholar
Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell84, 37–47 ( 1996). ArticleCAS Google Scholar
Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell96, 69–78 (1999). ArticleCAS Google Scholar
Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere- associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol.128, 95–104 ( 1995). ArticleCAS Google Scholar
Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol.142, 787– 801 (1998). ArticleCAS Google Scholar
Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol.143 , 687–694 (1998). ArticleCAS Google Scholar
Saunders, W. S. & Hoyt, M. A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell70, 451–458 ( 1992). ArticleCAS Google Scholar
O'Connell, M. J., Meluh, P. B., Rose, M. D. & Morris, N. R. Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. J. Cell Biol.120, 153– 162 (1993). ArticleCAS Google Scholar
Mountain, V. et al. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol147, 351-366 (1999 ). Article Google Scholar
Follette, P. J. & O'Farrell, P. H. Cdks and the Drosophila cell cycle. Curr. Opin. Genet. Dev.7, 17–22 (1997). ArticleCAS Google Scholar
Sawin, K. E. & Mitchison, T. J. Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc. Natl Acad. Sci. USA92, 4289–4293 (1995). ArticleADSCAS Google Scholar
Lee, K. S., Yuan, Y. L., Kuriyama, R. & Erikson, R. L. Plk is an M-phase-specific protein kinase and interacts with a kinesin- like protein, CHO1/MKLP-1. Mol. Cell Biol.15, 7143–7151 (1995). ArticleCAS Google Scholar
Chan, G. K., Jablonski, S. A., Sudakin, V., Hittle, J. C. & Yen, T. J. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J. Cell Biol.146, 941– 954 (1999). ArticleCAS Google Scholar
Giet, R., Uzbekov, R., Cubizolles, F., Le Guellec, K. & Prigent, C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem.274, 15005 –15013 (1999). ArticleCAS Google Scholar
Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science286, 971–974 (1999). ArticleCAS Google Scholar
Nicklas, R. B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem.17, 431–449 (1988). ArticleCAS Google Scholar
Funabiki, H. & Murray, A. W. The Xenopus Chromokinesin, XKid, is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell102, 411–424 (2000). ArticleCAS Google Scholar
Antonio, C. et al. XKid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell102, 425– 435 (2000). ArticleCAS Google Scholar