Force production by single kinesin motors (original) (raw)
References
Howard, J. Molecular motors: structural adaptations to cellular functions. Nature389, 561–567 (1997). ArticleCAS Google Scholar
Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature365, 721–727 (1993). ArticleCAS Google Scholar
Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature388, 386–390 (1997). ArticleCAS Google Scholar
Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature342, 154–158 (1989). ArticleCAS Google Scholar
Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature400, 184–189 (1999). ArticleCAS Google Scholar
Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell77, 773–784 (1994). ArticleCAS Google Scholar
Meyhöfer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA92, 574–578 (1995). Article Google Scholar
Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. The load dependence of kinesin's mechanical cycle. Proc. Natl Acad. Sci. USA94, 8539–8544 (1997). ArticleCAS Google Scholar
Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J.73, 2012–2022 (1997). ArticleCAS Google Scholar
Peskin, C. & Oster, G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J.68, 202s–211s (1995). CASPubMedPubMed Central Google Scholar
Duke, T. & Leibler, S. Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys. J.71, 1235–1247 (1996). ArticleCAS Google Scholar
Derényi, I. & Vicsek, T. The kinesin walk: a dynamic model with elastically coupled heads. Proc. Natl Acad. Sci. USA93, 6775–6779 (1996). Article Google Scholar
Astumian, R. D. Thermodynamics and kinetics of a brownian motor. Science276, 917–922 (1997). ArticleCAS Google Scholar
Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science282, 902–907 (1998). ArticleCAS Google Scholar
Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 1992). Google Scholar
Ma, Y. Z. & Taylor, E. W. Mechanism of microtubule kinesin ATPase. Biochemistry34, 13242–13251 (1995). ArticleCAS Google Scholar
Ma, Y. Z. & Taylor, E. W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem.272, 724–730 (1997). ArticleCAS Google Scholar
Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Pathway of processive ATP hydrolysis by kinesin. Nature373, 671–676 (1995). ArticleCAS Google Scholar
Gilbert, S. P., Moyer, M. L. & Johnson, K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry37, 792–799 (1998). ArticleCAS Google Scholar
Moyer, M. L., Gilbert, S. P. & Johnson, K. A. Pathway of ATP hydrolysis by monomeric and dimeric kinesin. Biochemistry37, 800–813 (1998). ArticleCAS Google Scholar
Bagshaw, C. R. Muscle Contraction. (Chapman and Hall, London, 1993). Book Google Scholar
Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA91, 6865–6869 (1994). ArticleCAS Google Scholar
Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature377, 448–450 (1995). ArticleCAS Google Scholar
Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature402, 778–784 (1999). ArticleCAS Google Scholar
Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature388, 390–393 (1997). ArticleCAS Google Scholar
Case, R. B., Rice, S., Hart, C. L., Ly, B. & Vale, R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol.10, 157–160 (2000). ArticleCAS Google Scholar
Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell90, 959–966 (1997). ArticleCAS Google Scholar
Henningsen, U. & Schliwa, M. Reversal in the direction of movement of a molecular motor. Nature389, 93–96 (1997). ArticleCAS Google Scholar
Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science281, 1200–1202 (1998). ArticleCAS Google Scholar
Nishiyama, M. et al. The rising phase of kinesin's 8nm step. Biophys. J.78, 122A (2000). Google Scholar
Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with an optical tweezers. Nature348, 348–352 (1990). ArticleCAS Google Scholar
Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature380, 451–453 (1996). ArticleCAS Google Scholar
Hancock, W. O. & Howard, J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl Acad. Sci. USA96, 13147–13152 (1999). ArticleCAS Google Scholar
Cross, R. A., Crevel, I., Carter, N. J., Alonso, M. C., Hirose, K. & Amos, L. A. The conformational cycle of kinesin. Phil. Trans. R. Soc. Lond. B355, 459–464 (2000). ArticleCAS Google Scholar
Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature368, 113–119 (1994). ArticleCAS Google Scholar
Visscher, K. & Block, S. M. Versatile optical traps with feedback control. Methods Enzymol.298, 460–489 (1998). ArticleCAS Google Scholar
Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Topics Quant. Elect.2, 1066–1076 (1996). ArticleCAS Google Scholar