Phytochromes and light signal perception by plants—an emerging synthesis (original) (raw)
Neff, M. M., Fankhauser, C. & Chory, J. Light: an indicator of time and place. Genes Dev.14, 257–271 ( 2000). CASPubMed Google Scholar
Ahmad, M. & Cashmore, A. R Seeing blue: The discovery of cryptochrome. Plant Mol. Biol.30, 851– 861 (1996). ArticleCASPubMed Google Scholar
Christie, J. M. et al.Arabidopsis NPH1: A flavoprotein with the properties of a photoreceptor for phototropism. Science282, 1698–1701 (1998). ArticleADSCASPubMed Google Scholar
Smith, H. Light quality, photoperception and plant strategy. Annu. Rev. Plant Physiol.33, 481–518 ( 1982). ArticleCAS Google Scholar
Ballare, C. L., Scope, A. L., Sanchez, R. A., Casal, J. J. & Ghersa, C. M. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Env.10, 551–557 (1987). Google Scholar
Gilbert, I. R., Seavers, G. P., Jarvis, P. G. & Smith, H. Photomorphogenesis and canopy dynamics. Phytochrome-mediated proximity perception accounts for the growth dynamics of canopies of Populus trichocarpa X deltoides ‘Beaupré’. Plant Cell Env.18, 475–497 (1995). Article Google Scholar
Smith, H. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol.46, 289– 315 (1995). ArticleCAS Google Scholar
Clack, T., Mathews, S. & Sharrock, R. A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol.25, 413 –427 (1994). ArticleCASPubMed Google Scholar
Mathews, S. & Sharrock, R. A. The phytochrome gene family in grasses (Poaceae): A phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. Mol. Biol. Evol.13, 1141–1150 (1996). ArticleCASPubMed Google Scholar
Mathews, S. & Sharrock, R. A. Phytochrome gene diversity. Plant Cell Env.20, 666– 671 (1997). ArticleCAS Google Scholar
Alba, R., Kelmenson, P. M., Cordonnier-Pratt, M. M. & Pratt, L. H. The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Mol. Biol. Evol.17, 362–373 (2000). ArticleCASPubMed Google Scholar
Kehoe, D. M. & Grossman, A. R. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science273, 1409–1412 (1996). ArticleADSCASPubMed Google Scholar
Yeh, K. C., Wu, S. H., Murphy, J. T. & Lagarias, J. C. A cyanobacterial phytochrome two-component light sensory system. Science277, 1505–1508 (1997). ArticleCASPubMed Google Scholar
Jiang, Z. Y. et al. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science285, 406–409 (1999). ArticleCASPubMed Google Scholar
Davis, S. J., Vener, A. V. & Vierstra, R. D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science286, 2517–2520 (1999). ArticleCASPubMed Google Scholar
Esch, H., Hartmann, E., Cove, D., Wada, M. & Lamparter, T. Phytochrome-controlled phototropism of protonemata of the moss Ceratodon purpureus: physiology of the wild type and class 2 ptr-mutants. Planta209, 290– 298 (1999). ArticleCASPubMed Google Scholar
Nozue, K. et al. A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc. Natl Acad. Sci. USA95, 15826–15830 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Thümmler, F., Dufner, M., Kreisl, P. & Dittrich, P. Molecular cloning of a novel phytochrome gene of the moss Ceratodon-purpureus which encodes a putative light-regulated protein-kinase. Plant Mol. Biol.20, 1003–1017 (1992). ArticlePubMed Google Scholar
Whitelam, G. C. & Devlin, P. F. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Env.20, 752–75 ( 1997). ArticleCAS Google Scholar
Smith, H., Xu, Y. & Quail, P. H. Antagonistic but complementary actions of phytochromes A and B allow optimum seedling de-etiolation. Plant Physiol.114, 637–641 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tobin, E. M. & Kehoe, D. M Phytochrome regulated gene expression. Semin. Cell Biology5, 335– 346 (1994). ArticleCAS Google Scholar
Kuno, N., Muramatsu, T., Hamazato, F. & Furuya, M. identification by large-scale screening of phytochrome-regulated genes in etiolated seedlings of Arabidopsis thaliana using a fluorescent differential display technique. Plant Physiol.122, 15 –22 (2000). ArticleCASPubMedPubMed Central Google Scholar
Shacklock, P. S., Read, N. D. & Trewavas, A. J. Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature358, 753– 755 (1992). ArticleADSCAS Google Scholar
Wada, M., Grolig, F. & Haupt, W. Light-oriented chloroplast positioning—contribution to progress in photobiology. J. Photochem. Photobiol. B17, 3–25 (1993). ArticleCAS Google Scholar
Quail, P. H. et al. Phytochromes-photosensory perception and signal-transduction. Science268, 675–680 (1995). ArticleADSCASPubMed Google Scholar
Cashmore, A. R. Higher-plant phytochrome: “I used to date histidine, but now I prefer serine”. Proc. Natl Acad. Sci. USA95, 13358–13360 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Schneider-Poetsch, H. A. W. Signal transduction by phytochrome- phytochromes have a module related to the transmitter modules of bacterial sensor proteins. Photochem. Photobiol.56, 839–846 ( 1992). ArticleCASPubMed Google Scholar
Yeh, K. C. & Lagarias, J. C. Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl Acad. Sci. USA95, 13976– 13981 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Fankhauser, C. et al. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science284, 1539–1541 (1999). ArticleADSCASPubMed Google Scholar
Ahmad, M., Jarillo, J. A., Smirnova, O. & Cashmore, A. R. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell, 1, 939– 948 (1998). ArticleCASPubMed Google Scholar
Choi, G. et al. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature401, 610– 613 (1999). ArticleADSCASPubMed Google Scholar
Ni, M., Tepperman, J. M. & Quail, P. H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell95, 657–667 (1998). ArticleCASPubMed Google Scholar
Ni, M., Tepperman, J. M. & Quail, P. H. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature400, 781–784 (1999). ArticleADSCASPubMed Google Scholar
Halliday, K. J., Hudson, M., Ni, M., Qin, M. M. & Quail, P. H. poc1: An Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proc. Natl Acad. Sci. USA96, 5832–5837 ( 1999). ArticleADSCASPubMedPubMed Central Google Scholar
Martinez-Garcia, J. F., Huq, E. & Quail, P. H. Direct targeting of light signals to a promoter element-bound transcription factor. Science288, 859– 863 (2000). ArticleADSCASPubMed Google Scholar
Terzaghi, W. B. & Cashmore, A. R. Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol.46, 445–474 (1995). ArticleCAS Google Scholar
Nagy, F. & Schäfer, E. Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants. EMBO J.19: 157-163 (2000).
Kircher, S. et al. Light quality-dependent nuclear import of the plant photoreceptors phytochromes A and B. Plant Cell11, 1445 –1456 (1999). CASPubMedPubMed Central Google Scholar
Yamaguchi, R., Nakamura, M., Mochzuki, N., Kay, S. A. & Nagatani, A. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis . J. Cell Biol.145, 437– 445 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bognar, L. K. et al. The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proc. Natl Acad. Sci. USA96, 14652–14657 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Annu. Rev. Genet.13, 115–155 (1965). Google Scholar
Schlichting, C. D. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Systematics17, 667–693 (1986). Article Google Scholar
Sultan, S. E. Evolutionary implications of phenotypic plasticity in plants. Evol. Biol.21, 127–178 (1987). Article Google Scholar
Via, S. et al. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol.10, 212–216 (1995). ArticleCASPubMed Google Scholar
Van Tienderen, P. H. & Koelewijn, H. P. Selection on reaction norms, genetic correlations and constraints. Genet. Res.64, 115–125 ( 1994). ArticleCASPubMed Google Scholar
Callahan, H. S., Pigliucci, M. & Schlichting, C. D. Developmental phenotypic plasticity: where ecology and evolution meet molecular biology. BioEssays19, 519–525 (1997). ArticleCASPubMed Google Scholar
Schmitt, J., Dudley, S. A. & Pigliucci, M. Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade-avoidance responses in plants. Am. Nat.154, S43–S54 ( 1999). PubMed Google Scholar
Ballare, C. L. & Scopel, A. L. Phytochrome signalling in plant canopies: testing its population-level implications with photoreceptor mutants of Arabidopsis. Funct. Ecol.11, 441–450 (1997). Article Google Scholar
Pigliucci, M. & Schmitt, J. Genes affecting phenotypic plasticity in Arabidopsis: pleiotropic effects and reproductive fitness of photomorphogenic mutants. J. Evol. Biol.12, 551-562 (1999). Google Scholar
Schmitt, J., McCormac, A. C., Smith, H. A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am. Nat.146, 937– 953 (1995). Article Google Scholar
Smith, H. Signal perception, differential expression within multigene families and the molecular basis of phenotypic plasticity. Plant Cell Env.13, 585–594 (1990). ArticleCAS Google Scholar
McSteen, P. & Hake, S. Genetic control of plant development. Curr. Op. Biotechnol.9, 189– 195 (1998). ArticleCAS Google Scholar
Purugannan, M. D. The molecular genetics of regulatory genes. Mol. Ecol.9, 1451–1462 (2000) Article Google Scholar
Meyerowitz, E. M. Plants, animals and the logic of development. Trends Biochem. Sci.24, M65–M68 ( 1999) Article Google Scholar
Ting, C. T., Tsaur, S. C., Wu, M. L. & Wu, C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science282, 1501–1504 (1998). ArticleCASPubMed Google Scholar
Purugannan, M. D., Rounsley, S. D., Schmidt, R. J. & Yanofsky, M. F. Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics140, 354 –356 (1995). Google Scholar
Mitchell-Olds, T. The molecular-basis of quantitative genetic-variation in natural-populations. Trends Ecol. Evol.10, 324– 328 (1995). ArticleCASPubMed Google Scholar
Alonso-Blanco, C. & Koornneef, M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci.5, 22– 29 (2000). ArticleCASPubMed Google Scholar
Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C. J. & Koornneef, M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA96, 4710–4717 ( 1999). ArticleADSCASPubMedPubMed Central Google Scholar
Alonso-Blanco, C., El-Assal, S. E., Coupland, G. & Koornneef, M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Isles ecotypes of Arabidopsis thaliana. Genetics149, 749–764 ( 1998). CASPubMedPubMed Central Google Scholar
Swarup, K. et al. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J.20, 67–77 (1999). ArticleCASPubMed Google Scholar
Robson, P. R. H., McCormac, A. C., Irvine, A. S. & Smith, H. Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nature Biotechnol.14, 995–998 (1996). ArticleCAS Google Scholar
Olsen, J. E. et al. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J.12, 1339–1350 ( 1997). ArticleCAS Google Scholar
Donoghue, M. J. & Mathews, S. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. Molecular Phylogenet. Evol.9, 489– 500 (1998). ArticleCAS Google Scholar
Mathews, S. & Donoghue, M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science286, 947–950 (1999). ArticleCASPubMed Google Scholar
Quail, P. H. An emerging molecular map of the phytochrome. Plant Cell Environment20, 657–665 ( 1997). ArticleCAS Google Scholar
Whitelam, G. C. & Devlin, P. F. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Env.20, 752–758 ( 1997). ArticleCAS Google Scholar
Robson, P. R. H. & Smith, H. Fundamental and biotechnological applications of the phytochromes. Plant Cell Env.20, 831–839 ( 1997). ArticleCAS Google Scholar