Structural determinants of water permeation through aquaporin-1 (original) (raw)
References
Macey, R. I. & Farmer, R. E. I. Inhibition of water and solute permeability in human red cells. Biochem. Biophys. Acta211, 104–106 (1970). ArticleCAS Google Scholar
Denker, B. M., Smith, B. L., Kuhajda, F. P. & Agre, P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem.263, 15634–15642 (1988). CASPubMed Google Scholar
Preston, G. M. & Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proc. Natl Acad. Sci. USA88, 11110 –11114 (1991). ArticleADSCAS Google Scholar
Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science256, 385– 387 (1992). ArticleADSCAS Google Scholar
Heymann, J. B. & Engel, A. Aquaporins: Phylogeny, structure and physiology of water channels. News Physiol. Sci.14 , 187–193 (1999). CASPubMed Google Scholar
Pomes, R. & Roux, B. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys. J.71, 19–39 (1996). ArticleADSCAS Google Scholar
Wistow, G., Pisano, M. & Chepelinsky, A. Tandem sequence repeats in transmembrane channel proteins. Trends Biochem. Sci.16, 170– 171 (1991). ArticleCAS Google Scholar
Reizer, J., Reizer, A. & Saier, M. J. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstituted pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit. Rev. Biochem. Mol. Biol.28, 235–257 (1993). ArticleCAS Google Scholar
Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem.269, 1668–1673 (1994). CASPubMed Google Scholar
Jung, J., Preston, G. M., Smith, B., Guggino, W. & Agre, P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem.269, 14648–14654 (1994). CAS Google Scholar
van Hoek, A. N. et al. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J. Biol. Chem.266, 16633–16635 (1991). CASPubMed Google Scholar
Smith, B. L. & Agre, P. Erythrocyte _M_r 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem.266, 6407– 6415 (1991). CASPubMed Google Scholar
Cheng, A., van Hoek, A. N., Yeager, M., Verkman, A. S. & Mitra, A. K. Three-dimensional organization of a human water channel. Nature387, 627 –630 (1997). ArticleADSCAS Google Scholar
Li, H., Lee, S. & Jap, B. K. Molecular design of aquaporin-1 water channel as revealed by electron crystallography. Nature Struct. Biol.4, 263– 265 (1997). ArticleCAS Google Scholar
Walz, T., Smith, B., Agre, P. & Engel, A. The three-dimensional structure of human erythrocyte aquaporin CHIP. EMBO J.13, 2985–2993 (1994). ArticleCAS Google Scholar
Walz, T. et al. The three-dimensional structure of aquaporin-1. Nature387, 624–627 ( 1997). ArticleADSCAS Google Scholar
Fujiyoshi, Y. et al. Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy38, 241–251 (1991). Article Google Scholar
Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography. Adv. Biophys.35, 25–80 (1998). ArticleCAS Google Scholar
Mitsuoka, K. et al. The structure of aquaporin-1 at 4.5 Å resolution reveals short α-helices in the center of the monomer. J. Struct. Biol.128, 34–43 (1999). ArticleCAS Google Scholar
Heymann, J. B. & Engel, A. Structural clues in the sequences of the aquaporins. J. Mol. Biol.295 , 1039–1053 (2000). ArticleCAS Google Scholar
De Groot, B. L. et al. The fold of human aquaporin 1. J. Mol. Biol. (in the press).
Russ, W. P. & Engelman, M. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol.296, 911–919 (2000). ArticleCAS Google Scholar
Walz, T., Smith, B., Zeidel, M., Engel, A. & Agre, P. Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem.267, 1583–1586 (1994). Google Scholar
Zeidel, M. et al. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry31, 7436–7440 (1992). ArticleCAS Google Scholar
Zeidel, M. et al. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry33, 1606–1615 (1994). ArticleCAS Google Scholar
Doyle, D. A. et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science280, 69–77 (1998). ArticleADSCAS Google Scholar
Gutierrez, A. M., Gonzales, E., Echevarria, M., Hernandez, C. S. & Whittembury, G. The proximal straight tubule (PST) basolateral cell membrane water channel: Selectivity characteristics. J. Membr. Biol.143, 189– 197 (1995). ArticleCAS Google Scholar
Yang, B, van Hoek, A. N. & Verkman, A. S. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4. Biochemistry36, 7625– 7632 (1997). ArticleCAS Google Scholar
Preston, G., Jung, J., Guggino, W. & Agre, P. The mercury-sensitive residue at cycteine 189 in the CHIP28 water channel. J. Biol. Chem.268, 17–20 ( 1993). CASPubMed Google Scholar
Zhang, R., van Hoek, A. N., Biwersi, J. & Verkman, A. S. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28, Biochemistry32, 2938–2941 (1993). ArticleCAS Google Scholar
Schulz, G. E. & Schermer, R. H. in Principles of Protein Structure (ed. Cantor, C. R.) 17–26 (Springer, New York, 1979). Google Scholar
Tukaguchi, H. et al. Molecular characterization of a broad selectivity neural solute channel. J. Biol. Chem.273, 24737– 24743 (1998). Article Google Scholar
Yasui, M. et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature402, 184–187 (1999). ArticleADSCAS Google Scholar
Hirai, T. et al. Trehalose embedding technique for high-resolution electron crystallography: application to structural study on bacteriorhodopsin. J. Elec. Microsc.48, 653–658 ( 1999). ArticleCAS Google Scholar
Mitsuoka, K., Murata, K., Kimura, Y., Namba, K. & Fujiyoshi, Y. Examination of the Leafscan 45, a line-illuminating micro-densitometer, for its use in electron crystallography. Ultramicroscopy68, 109–121 ( 1997). ArticleCAS Google Scholar
Krivanek, O. L. & Mooney, P. E. Applications of slow-scan CCD camera in transmission electron microscopy. Ultramicroscopy49, 95–108 ( 1993). ArticleCAS Google Scholar
Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Biol.116, 86–92 ( 1996). Article Google Scholar
Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: Implication on the charge distribution. J. Mol. Biol.286, 861– 882 (1999). ArticleCAS Google Scholar
Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy19, 147–178 (1986). ArticleCAS Google Scholar
Collaborative Computational Project No. 4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994). Article Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps. Acta Crystallogr. A47, 110–119 ( 1991). Article Google Scholar
Brünger, A. T. X-PLOR Version 3.1-A System for X-ray Crystallography (Yale Univ. Press, New Haven/London, 1988).
Scheuring, S. et al. The aquaporin sidedness revisited. J. Mol. Biol.295, 1271–1278 ( 2000). Article Google Scholar
Scheuring, S. et al. High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J.18, 4981–4987 (1999). ArticleCAS Google Scholar
Kraulis, P. J. MOLSCRIPT-a program to produce both detailed and schematic plots of proteins structures. J. Appl. Crystallogr.24, 946 –950 (1991). Article Google Scholar
Merritt, E. A. & Bacon, D. J. Raster 3D: photorealistic molecular graphics. Methods Enzymol.277, 505–524 (1997). ArticleCAS Google Scholar
Fu, D. X. et al. Structure of a glycerol conducting channel and the basis for its selectivity. Science (in the press).