Structural determinants of water permeation through aquaporin-1 (original) (raw)

References

  1. Macey, R. I. & Farmer, R. E. I. Inhibition of water and solute permeability in human red cells. Biochem. Biophys. Acta 211, 104–106 (1970).
    Article CAS Google Scholar
  2. Denker, B. M., Smith, B. L., Kuhajda, F. P. & Agre, P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263, 15634–15642 (1988).
    CAS PubMed Google Scholar
  3. Preston, G. M. & Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proc. Natl Acad. Sci. USA 88, 11110 –11114 (1991).
    Article ADS CAS Google Scholar
  4. Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385– 387 (1992).
    Article ADS CAS Google Scholar
  5. Heymann, J. B. & Engel, A. Aquaporins: Phylogeny, structure and physiology of water channels. News Physiol. Sci. 14 , 187–193 (1999).
    CAS PubMed Google Scholar
  6. Pomes, R. & Roux, B. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys. J. 71, 19–39 (1996).
    Article ADS CAS Google Scholar
  7. Wistow, G., Pisano, M. & Chepelinsky, A. Tandem sequence repeats in transmembrane channel proteins. Trends Biochem. Sci. 16, 170– 171 (1991).
    Article CAS Google Scholar
  8. Reizer, J., Reizer, A. & Saier, M. J. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstituted pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit. Rev. Biochem. Mol. Biol. 28, 235–257 (1993).
    Article CAS Google Scholar
  9. Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem. 269, 1668–1673 (1994).
    CAS PubMed Google Scholar
  10. Jung, J., Preston, G. M., Smith, B., Guggino, W. & Agre, P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. 269, 14648–14654 (1994).
    CAS Google Scholar
  11. van Hoek, A. N. et al. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J. Biol. Chem. 266, 16633–16635 (1991).
    CAS PubMed Google Scholar
  12. Smith, B. L. & Agre, P. Erythrocyte _M_r 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266, 6407– 6415 (1991).
    CAS PubMed Google Scholar
  13. Cheng, A., van Hoek, A. N., Yeager, M., Verkman, A. S. & Mitra, A. K. Three-dimensional organization of a human water channel. Nature 387, 627 –630 (1997).
    Article ADS CAS Google Scholar
  14. Li, H., Lee, S. & Jap, B. K. Molecular design of aquaporin-1 water channel as revealed by electron crystallography. Nature Struct. Biol. 4, 263– 265 (1997).
    Article CAS Google Scholar
  15. Walz, T., Smith, B., Agre, P. & Engel, A. The three-dimensional structure of human erythrocyte aquaporin CHIP. EMBO J. 13, 2985–2993 (1994).
    Article CAS Google Scholar
  16. Walz, T. et al. The three-dimensional structure of aquaporin-1. Nature 387, 624–627 ( 1997).
    Article ADS CAS Google Scholar
  17. Fujiyoshi, Y. et al. Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy 38, 241–251 (1991).
    Article Google Scholar
  18. Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography. Adv. Biophys. 35, 25–80 (1998).
    Article CAS Google Scholar
  19. Mitsuoka, K. et al. The structure of aquaporin-1 at 4.5 Å resolution reveals short α-helices in the center of the monomer. J. Struct. Biol. 128, 34–43 (1999).
    Article CAS Google Scholar
  20. Heymann, J. B. & Engel, A. Structural clues in the sequences of the aquaporins. J. Mol. Biol. 295 , 1039–1053 (2000).
    Article CAS Google Scholar
  21. De Groot, B. L. et al. The fold of human aquaporin 1. J. Mol. Biol. (in the press).
  22. Russ, W. P. & Engelman, M. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919 (2000).
    Article CAS Google Scholar
  23. Walz, T., Smith, B., Zeidel, M., Engel, A. & Agre, P. Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem. 267, 1583–1586 (1994).
    Google Scholar
  24. Zeidel, M. et al. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).
    Article CAS Google Scholar
  25. Zeidel, M. et al. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 33, 1606–1615 (1994).
    Article CAS Google Scholar
  26. Doyle, D. A. et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).
    Article ADS CAS Google Scholar
  27. Gutierrez, A. M., Gonzales, E., Echevarria, M., Hernandez, C. S. & Whittembury, G. The proximal straight tubule (PST) basolateral cell membrane water channel: Selectivity characteristics. J. Membr. Biol. 143, 189– 197 (1995).
    Article CAS Google Scholar
  28. Yang, B, van Hoek, A. N. & Verkman, A. S. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4. Biochemistry 36, 7625– 7632 (1997).
    Article CAS Google Scholar
  29. Preston, G., Jung, J., Guggino, W. & Agre, P. The mercury-sensitive residue at cycteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 17–20 ( 1993).
    CAS PubMed Google Scholar
  30. Zhang, R., van Hoek, A. N., Biwersi, J. & Verkman, A. S. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28, Biochemistry 32, 2938–2941 (1993).
    Article CAS Google Scholar
  31. Schulz, G. E. & Schermer, R. H. in Principles of Protein Structure (ed. Cantor, C. R.) 17–26 (Springer, New York, 1979).
    Google Scholar
  32. Tukaguchi, H. et al. Molecular characterization of a broad selectivity neural solute channel. J. Biol. Chem. 273, 24737– 24743 (1998).
    Article Google Scholar
  33. Yasui, M. et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402, 184–187 (1999).
    Article ADS CAS Google Scholar
  34. Hirai, T. et al. Trehalose embedding technique for high-resolution electron crystallography: application to structural study on bacteriorhodopsin. J. Elec. Microsc. 48, 653–658 ( 1999).
    Article CAS Google Scholar
  35. Mitsuoka, K., Murata, K., Kimura, Y., Namba, K. & Fujiyoshi, Y. Examination of the Leafscan 45, a line-illuminating micro-densitometer, for its use in electron crystallography. Ultramicroscopy 68, 109–121 ( 1997).
    Article CAS Google Scholar
  36. Krivanek, O. L. & Mooney, P. E. Applications of slow-scan CCD camera in transmission electron microscopy. Ultramicroscopy 49, 95–108 ( 1993).
    Article CAS Google Scholar
  37. Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Biol. 116, 86–92 ( 1996).
    Article Google Scholar
  38. Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: Implication on the charge distribution. J. Mol. Biol. 286, 861– 882 (1999).
    Article CAS Google Scholar
  39. Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19, 147–178 (1986).
    Article CAS Google Scholar
  40. Collaborative Computational Project No. 4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
    Article Google Scholar
  41. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps. Acta Crystallogr. A 47, 110–119 ( 1991).
    Article Google Scholar
  42. Brünger, A. T. X-PLOR Version 3.1-A System for X-ray Crystallography (Yale Univ. Press, New Haven/London, 1988).
  43. Scheuring, S. et al. The aquaporin sidedness revisited. J. Mol. Biol. 295, 1271–1278 ( 2000).
    Article Google Scholar
  44. Scheuring, S. et al. High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18, 4981–4987 (1999).
    Article CAS Google Scholar
  45. Kraulis, P. J. MOLSCRIPT-a program to produce both detailed and schematic plots of proteins structures. J. Appl. Crystallogr. 24, 946 –950 (1991).
    Article Google Scholar
  46. Merritt, E. A. & Bacon, D. J. Raster 3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).
    Article CAS Google Scholar
  47. Fu, D. X. et al. Structure of a glycerol conducting channel and the basis for its selectivity. Science (in the press).

Download references