Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans : past, present and future. Trends Genet.14, 410–416 (1998). CASPubMed Google Scholar
Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature287, 795–801 (1980). CASPubMed Google Scholar
Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet.8, 1955–1963 (1999). CASPubMed Google Scholar
Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol.4, 189– 201 (1994). CASPubMed Google Scholar
Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science264, 719 –725 (1994).This study was the first to successfully use random mutagenesis, phenotype-based screening and positional cloning (that is, a forward-genetic approach) in mice. CASPubMedPubMed Central Google Scholar
Reppert, S. M. & Weaver, D. R. Forward genetic approach strikes gold: cloning of a mammalian Clock gene. Cell89, 487–490 (1997). CASPubMed Google Scholar
Munroe, R. J. et al. Mouse mutants from chemically mutagenized embryonic stem cells . Nature Genet.24, 318– 321 (2000). CASPubMed Google Scholar
Schena, M. et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl Acad. Sci. USA93, 10614–10619 (1996). CASPubMedPubMed Central Google Scholar
Schreiber, S. L. Chemical genetics resulting from a passion for synthetic organic chemistry . Bioorg. Med. Chem.6, 1127– 1152 (1998). CASPubMed Google Scholar
Stockwell, B. R., Haggarty, S. J. & Schreiber, S. L. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol.6, 71–83 ( 1999). CASPubMed Google Scholar
Agrawal, S. & Zhao, Q. Antisense therapeutics. Curr. Opin. Chem. Biol.2, 519–528 (1998). CASPubMed Google Scholar
Dervan, P. B. & Burli, R. W. Sequence-specific DNA recognition by polyamides. Curr. Opin. Chem. Biol.3, 688–693 (1999). CASPubMed Google Scholar
Parascandola, J. The theoretical basis of Paul Ehrlich's chemotherapy. J. Hist. Med. Allied Sci.36, 19–43 (1981). CASPubMed Google Scholar
Schmitz, R. Friedrich Wilhelm Serturner and the discovery of morphine. Pharm. Hist.27, 61–74 ( 1985). CASPubMed Google Scholar
Parascandola, J. Reflections on the history of pharmacology: the 1980 Kremers award address . Pharm. Hist.22, 131– 140 (1980). CASPubMed Google Scholar
Ehrlich, P. Chemotherapeutics: Scientific principles, methods and results. Lancetii, 445–451 ( 1913). Google Scholar
Travis, A. S. Science as a receptor of technology: Paul Ehrlich and the synthetic dyestuffs industry. Sci. Context3, 383– 408 (1989). CASPubMed Google Scholar
Travis, A. S. Perkin's mauve: ancestor of the organic chemical industry. Technol. Cult.31, 51–82 ( 1990). Google Scholar
Popescu, A. & Doyle, R. J. The Gram stain after more than a century. Biotech. Histochem.71, 145– 151 (1996). CASPubMed Google Scholar
McTavish, J. R. Aspirin in Germany: the pharmaceutical industry and the pharmaceutical profession . Pharm. Hist.29, 103– 115 (1987). CASPubMed Google Scholar
Kaufman, G. B. & Priebe, P. M. The discovery of saccharin: a centennial retrospect. Ambix25, 191–207 (1978). Google Scholar
Geyer, C. R., Colman-Lerner, A. & Brent, R. 'Mutagenesis' by peptide aptamers identifies genetic network members and pathway connections. Proc. Natl Acad. Sci. USA96, 8567–8572 ( 1999).This is the first successful use of peptide aptamers in a forward chemical-genetic screen. CASPubMedPubMed Central Google Scholar
Colas, P. Combinatorial protein reagents to manipulate protein function. Curr. Opin. Chem. Biol.4, 54–59 (2000). CASPubMed Google Scholar
Dolle, R. E. Comprehensive survey of chemical libraries yielding enzyme inhibitors, receptor agonists and antagonists, and other biologically active agents: 1992 through 1997. Mol. Diversity3, 199– 233 (1998). CAS Google Scholar
Dolle, R. E. & Nelson, K. H., Jr Comprehensive survey of combinatorial library synthesis: 1998. J. Comb. Chem.1, 235–282 ( 1999). CASPubMed Google Scholar
Merrifield, B. Concept and early development of solid-phase peptide synthesis. Methods Enzymol.289, 3–13 (1997). CASPubMed Google Scholar
Schneider, C. H., Rolli, H. & Blaser, K. Liquid–liquid extraction in peptide synthesis. Int. J. Pept. Protein Res.15, 411– 419 (1980). CASPubMed Google Scholar
Lam, K. S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature354, 82– 84 (1991). CASPubMed Google Scholar
Furka, A., Sebestyen, F., Asgedom, M. & Dido, G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res.37, 487– 493 (1991).References29and30describe split-pool synthesis, a revolutionary method for synthesizing very large chemical libraries. CASPubMed Google Scholar
Fodor, S. P. et al. Light-directed, spatially addressable parallel chemical synthesis . Science251, 767–773 (1991). CASPubMed Google Scholar
Scott, J. K. & Smith, G. P. Searching for peptide ligands with an epitope library. Science249, 386– 390 (1990). CASPubMed Google Scholar
Colas, P. et al. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature380, 548 –550 (1996). CASPubMed Google Scholar
Lien, E. J. & Wang, P. H. Lipophilicity, molecular weight, and drug action: reexamination of parabolic and bilinear models. J. Pharmacol. Sci.69, 648–650 (1980). CAS Google Scholar
Tan, D. S., Foley, M. A., Stockwell, B. R., Shair, M. D. & Schreiber, S. L. Synthesis and preliminary evaluation of a library of polycyclic small molecules for use in chemical genetic assays . J. Am. Chem. Soc.121, 9073– 9087 (1999). CAS Google Scholar
Sullivan, R. W. et al. 2-Chloro-4-(trifluoromethyl)pyrimidine-5-_N_-(3′,5′-bis(trifluoromethyl)phenyl)-carboxamide: a potent inhibitor of NF-κB- and AP-1-mediated gene expression identified using solution-phase combinatorial chemistry. J. Med. Chem.41, 413–419 (1998). CASPubMed Google Scholar
An, H., Haly, B. D. & Cook, P. D. Discovery of novel pyridinopolyamines with potent antimicrobial activity: deconvolution of mixtures synthesized by solution-phase combinatorial chemistry. J. Med. Chem.41, 706– 716 (1998). CASPubMed Google Scholar
Boger, D. L., Chai, W. & Jin, Q. Multistep convergent solution-phase combinatorial synthesis and deletion synthesis deconvolution. J. Am. Chem. Soc.120, 7220 –7225 (1998). CAS Google Scholar
Hung, D. T., Jamison, T. F. & Schreiber, S. L. Understanding and controlling the cell cycle with natural products. Chem. Biol.3, 623– 640 (1996). CASPubMed Google Scholar
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products . Chem. Biol.5, 245–249 (1998) [ PubMed].The authors describe a powerful method for discovering new natural products using bacterial genetics. Google Scholar
Tan, D. S., Foley, M. A., Shair, M. D. & Schreiber, S. L. Stereoselective synthesis of over two million compounds having structural features both reminiscent of natural products and compatible with miniaturized cell-based assays. J. Am. Chem. Soc.120, 8565–8566 (1998). This is the first demonstrated use of combinatorial chemistry to synthesize a large library of structurally complex small molecules. CAS Google Scholar
Wang, J. & Ramnarayan, K. Toward designing drug-like libraries: a novel computational approach for prediction of drug feasibility of compounds . J. Comb. Chem.1, 524– 533 (1999). CASPubMed Google Scholar
Gellman, S. H. Foldamers: a manifesto. Acc. Chem. Res.31, 173–180 (1998). CAS Google Scholar
Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery . Science287, 1964–1969 (2000). CASPubMed Google Scholar
Vaino, A. R. & Janda, K. D. Euclidean shape-encoded combinatorial chemical libraries. Proc. Natl Acad. Sci. USA97, 7692–7696 (2000). CASPubMedPubMed Central Google Scholar
Sundberg, S. A. High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr. Opin. Biotechnol.11, 47–53 (2000). CASPubMed Google Scholar
Borchardt, A., Liberles, S. D., Biggar, S. R., Crabtree, G. R. & Schreiber, S. L. Small molecule-dependent genetic selection in stochastic nanodroplets as a means of detecting protein–ligand interactions on a large scale. Chem. Biol.4, 961–968 (1997). CASPubMed Google Scholar
You, A. J., Jackman, R. J., Whitesides, G. M. & Schreiber, S. L. A miniaturized arrayed assay format for detecting small molecule–protein interactions in cells. Chem. Biol.4, 969 –975 (1997). CASPubMed Google Scholar
Mere, L. et al. Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. Drug Discov. Today4, 363–369 (1999). CASPubMed Google Scholar
Wetterau, J. R. et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science282, 751– 754 (1998). CASPubMed Google Scholar
Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science285, 1733–1737 (1999). CASPubMed Google Scholar
Sebolt-Leopold, J. S. et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Med.5, 810 –816 (1999). CASPubMed Google Scholar
Aramburu, J. et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science285, 2129–2133 (1999). CASPubMed Google Scholar
Apletalina, E., Appel, J., Lamango, N. S., Houghten, R. A. & Lindberg, I. Identification of inhibitors of prohormone convertases 1 and 2 using a peptide combinatorial library. J. Biol. Chem.273, 26589–26595 (1998). CASPubMed Google Scholar
Tian, S. S. et al. A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor. Science281, 257– 259 (1998). CASPubMed Google Scholar
Zhang, B. et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science284, 974– 977 (1999). CASPubMed Google Scholar
Chen, J. K., Lane, W. S., Brauer, A. W., Tanaka, A. & Schreiber, S. L. Biased combinatorial libraries: Novel ligands for the SH3 domain of phosphatidylinositol 3-kinase. J. Am. Chem. Soc.115, 12591–12592 (1993). CAS Google Scholar
Bottger, V. et al. Identification of novel mdm2 binding peptides by phage display . Oncogene13, 2141–2147 (1996). CASPubMed Google Scholar
Norris, J. D. et al. Peptide antagonists of the human estrogen receptor. Science285, 744–746 ( 1999). CASPubMed Google Scholar
Rohrer, S. P. et al. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science282, 737–740 ( 1998).These authors were the first to apply reverse chemical-genetics to a protein family. They identify specific small molecule partners of each member of a family of somatostatin cell-surface receptors. CASPubMed Google Scholar
Norman, T. C. et al. Genetic selection of peptide inhibitors of biological pathways . Science285, 591–595 (1999). CASPubMed Google Scholar
Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science286, 971–974 (1999). CASPubMed Google Scholar
Rosania, G. R. et al. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nature Biotechnol.18, 304– 308 (2000). [ PubMed] CAS Google Scholar
Hrabe de Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet.25, 444– 447 (2000). CASPubMed Google Scholar
Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet.25, 440–443 (2000). CASPubMed Google Scholar
Stockwell, B. R., Hardwick, J. S., Tong, J. K. & Schreiber, S. L. Chemical genetic and genomic approaches reveal a role for copper in specific gene activation. J. Am. Chem. Soc.121, 10662–10663 (1999). CAS Google Scholar
Boland, M. V., Markey, M. K. & Murphy, R. F. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry33, 366–375 ( 1998). CASPubMed Google Scholar
Kino, T. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces I. Fermentation, isolation, and physico-chemical and biological characteristics . J. Antibiot. (Tokyo)XL, 1249– 1255 (1987). Google Scholar
Kino, T. et al. FK-506, A novel immunosupressant isolated from a Streptomyces II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. (Tokyo)XL, 1256–1265 (1987). Google Scholar
Haggarty, S. J. et al. Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis . Chem. Biol.7, 275–286 (2000). CASPubMed Google Scholar
Roberge, M. et al. High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide. Cancer Res.58, 5701–5706 ( 1998). CASPubMed Google Scholar
Caponigro, G. et al. Transdominant genetic analysis of a growth control pathway . Proc. Natl Acad. Sci. USA95, 7508– 7513 (1998). CASPubMedPubMed Central Google Scholar
Yamaguchi, K. et al. 4-Phenylthiazole derivatives inhibit IL-6 secretion in osteoblastic cells and suppress bone weight loss in ovariectomized mice. Bioorg. Med. Chem. Lett.9, 957–960 (1999). CASPubMed Google Scholar
Lu, X. P. et al. Novel retinoid-related molecules as apoptosis inducers and effective inhibitors of human lung cancer cells in vivo. Nature Med.3, 686–690 ( 1997). CASPubMed Google Scholar
Rice, J. W., Davis, J. E., Crowl, R. M. & Johnston, P. A. Development of a high volume screen to identify inhibitors of endothelial cell activation. Anal. Biochem.241, 254 –259 (1996). CASPubMed Google Scholar
Goldstein, A. The interactions of drugs and plasma proteins. Pharmacol. Rev.1, 102–163 ( 1949). Google Scholar
Karlin, A. & Winnik, M. Reduction and specific alkylation of the receptor for acetycholine. Proc. Natl Acad. Sci. USA60, 668–674 (1968). CASPubMedPubMed Central Google Scholar
Raftery, M. A., Hunkapiller, M. W., Strader, C. D. & Hood, L. E. Acetylcholine receptor: complex of homologous subunits. Science208, 1454–1457 ( 1980). CASPubMed Google Scholar
Noda, M. et al. Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature299, 793–797 (1982). CASPubMed Google Scholar
Kornel, L. On the effects and the mechanism of action of corticosteroids in normal and neoplastic target tissues: findings and hypotheses. Acta Endocrinol. Suppl. (Copenh.)178, 1–45 (1973). CAS Google Scholar
Liu, J. et al. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell66, 807–815 (1991). CASPubMed Google Scholar
Brown, E. J. et al. & Schreiber, S. L. A mammalian protein targeted by G1-arresting rapamycin–receptor complex . Nature369, 756–758 (1994). CASPubMed Google Scholar
Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science272, 408–411 (1996).The authors demonstrate the power of affinity chromatography and biochemical purification to identify the protein target of the natural product trapoxin. CASPubMed Google Scholar
Sin, N. et al. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase MetAP-2. Proc. Natl Acad. Sci. USA94, 6099–6103 ( 1997). CASPubMedPubMed Central Google Scholar
Kwon, H. J., Owa, T., Hassig, C. A., Shimada, J. & Schreiber, S. L. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc. Natl Acad. Sci. USA95, 3356–3361 (1998). CASPubMedPubMed Central Google Scholar
Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science268, 726–731 (1995). CASPubMed Google Scholar
Sche, P. P., McKenzie, K. M., White, J. D. & Austin, D. J. Display cloning: functional identification of natural product receptors using cDNA-phage display. Chem. Biol.6, 707– 716 (1999). CASPubMed Google Scholar
Hughes, T. R. et al. Functional discovery via a compendium of expression profiles . Cell102, 109–126 (2000). CASPubMed Google Scholar
Giaever, G. et al. Genomic profiling of drug sensitivities via induced haploinsufficiency . Nature Genet.21, 278– 283 (1999). CASPubMed Google Scholar
Winzeler, E. A. et al. Direct allelic variation scanning of the yeast genome. Science281, 1194–1197 ( 1998). CASPubMed Google Scholar
Colas, P. & Brent, R. The impact of two-hybrid and related methods on biotechnology. Trends Biotechnol.16, 355–363 (1998). CASPubMed Google Scholar
Licitra, E. J. & Liu, J. O. A three-hybrid system for detecting small ligand–protein receptor interactions. Proc. Natl Acad. Sci. USA93, 12817– 12821 (1996). CASPubMedPubMed Central Google Scholar
Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med.4 , 1293–1301 (1998). The authors demonstrate the utility of expression profiling for identifying the target(s) of a small molecule. CASPubMed Google Scholar
Giroux, S. et al. Embryonic death of Mek1–deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta . Curr. Biol.9, 369–372 (1999). CASPubMed Google Scholar
Blum, J. H., Dove, S. L., Hochschild, A. & Mekalanos, J. J. Isolation of peptide aptamers that inhibit intracellular processes. Proc. Natl Acad. Sci. USA97, 2241– 2246 (2000). CASPubMedPubMed Central Google Scholar
Adey, N. B. & Kay, B. K. Identification of calmodulin-binding peptide consensus sequences from a phage-displayed random peptide library . Gene169, 133–134 (1996). CASPubMed Google Scholar
Wrighton, N. C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin . Science273, 458–463 (1996). CASPubMed Google Scholar
Wrighton, N. C., Barrett, R. W. & Dower, W. J. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science276, 1696–1699 (1997). PubMed Google Scholar
Yayon, A. et al. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc. Natl Acad. Sci. USA90, 10643– 10647 (1993). CASPubMedPubMed Central Google Scholar
Yanofsky, S. D. et al. High affinity type I interleukin 1 receptor antagonists discovered by screening recombinant peptide libraries. Proc. Natl Acad. Sci. USA93, 7381–7386 ( 1996). CASPubMedPubMed Central Google Scholar
Maly, D. J., Choong, I. C. & Ellman, J. A. Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc. Natl Acad. Sci. USA97, 2419–2924 ( 2000). CASPubMedPubMed Central Google Scholar
Richter, L. S. & Moos, W. H. Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse _N_-(substituted)glycine peptoid library. J. Med. Chem.37, 2678–2685 (1994). Google Scholar
Liang, R. et al. Parallel synthesis and screening of a solid phase carbohydrate library. Science274, 1520– 1522 (1996). CASPubMed Google Scholar
Szardenings, A. K. et al. Identification of highly selective inhibitors of collagenase-1 from combinatorial libraries of diketopiperazines. J. Med. Chem.42, 1348–1357 ( 1999). CASPubMed Google Scholar
Bunin, B. A. & Ellman, J. A. A general and expedient method for the solid phase synthesis of 1,4-benzodiazepine derivatives. J. Am. Chem. Soc.114, 10997–10998 (1992). CAS Google Scholar
Peisach, E. et al. Interaction of a peptidomimetic aminimide inhibitor with elastase . Science269, 66–69 (1995). CASPubMed Google Scholar
Bailey, N. et al. A convenient procedure for the solution phase preparation of 2- aminothiazole combinatorial libraries. Bioorg. Med. Chem. Lett.6, 1409–1414 ( 1996). CAS Google Scholar