A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function (original) (raw)

References

  1. Dobyns, W. B., Reiner, O., Carrozzo, R. & Ledbetter, D. H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Soc. 270, 2838–2842 (1993).
    CAS Google Scholar
  2. Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).
    Article CAS Google Scholar
  3. Lo Nigro, C. et al. Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller–Dieker syndrome. Hum. Mol. Genet. 6, 157–164 (1997).
    Article CAS Google Scholar
  4. Chong, S. S. et al. A revision of the lissencephaly and Miller–Dieker syndrome critical regions in chromosome 17p13.3. Hum. Mol. Genet. 6, 147–155 (1997).
    Article CAS Google Scholar
  5. Mizuguchi, M., Takashima, S., Kakita, A., Yamada, M. & Ikeda, K. Lissencephaly gene product. Localization in the central nervous system and loss of immunoreactivity in Miller–Dieker syndrome. Am. J. Pathol. 147, 1142–1151 (1995).
    CAS PubMed PubMed Central Google Scholar
  6. Fogli, A. et al. Intracellular levels of the LIS1 protein correlate with clinical and neuroradiological findings in patients with classical lissencephaly [see comments]. Ann. Neurol. 45, 154–161 (1999).
    Article CAS Google Scholar
  7. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genet. 19, 333–339 (1998).
    Article CAS Google Scholar
  8. Hattori, M., Adachi, H., Tsujimoto, M., Arai, H. & Inoue, K. Miller–Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor. Nature 370, 216–218 (1994).
    Article CAS Google Scholar
  9. Xiang, X., Osmani, A. H., Osmani, S. A., Xin, M. & Morris, N. R. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310 (1995).
    Article CAS Google Scholar
  10. Plamann, M., Minke, P. F., Tinsley, J. H. & Bruno, K. S. Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J. Cell Biol. 127, 139–149 (1994).
    Article CAS Google Scholar
  11. Xiang, X., Beckwith, S. M. & Morris, N. R. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 91, 2100–2104 (1994).
    Article CAS Google Scholar
  12. Morris, N. R. Nuclear migration. From fungi to the mammalian brain. J. Cell Biol. 148, 1097–1101 (2000).
    Article CAS Google Scholar
  13. Geiser, J. R. et al. Saccaromyces cerevisiae genes required in the absence of the _CIN8_-encoded spindle motor act in functionally diverse mitotic pathways. Mol. Biol. Cell 8, 1035–1050 (1997).
    Article CAS Google Scholar
  14. Swan, A., Nguyen, T. & Suter, B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nature Cell Biol. 1, 444–449 (1999).
    Article CAS Google Scholar
  15. Liu, Z., Xie, T. & Steward, R. Lis1, the Drosophila homolog of a human lissencephaly disease gene, is required for germline cell division and oocyte differentiation. Development 126, 4477–4488 (1999).
    CAS PubMed Google Scholar
  16. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).
    Article CAS Google Scholar
  17. Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).
    Article CAS Google Scholar
  18. Wolff, A. et al. Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335. Eur. J. Cell Biol. 59, 425–432 (1992).
    CAS PubMed Google Scholar
  19. Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).
    Article CAS Google Scholar
  20. Carminati, J. L. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641 (1997).
    Article CAS Google Scholar
  21. Skop, A. R. & White, J. G. The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr. Biol. 8, 1110–1116 (1998).
    Article CAS Google Scholar
  22. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).
    Article CAS Google Scholar
  23. Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & De Mey, J. R. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol. 8, 541–544 (1998).
    Article CAS Google Scholar
  24. Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509–1526 (1994).
    Article CAS Google Scholar
  25. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 (1990).
    Article CAS Google Scholar
  26. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263–265 (1990).
    Article CAS Google Scholar
  27. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990).
    Article CAS Google Scholar
  28. Vallee, R. B. A taxol dependent procedure for the purification of microtubules and MAPs. J. Cell Biol. 92, 435–442 (1982).
    Article CAS Google Scholar
  29. Sapir, T., Elbaun, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984 (1997).
    Article CAS Google Scholar
  30. Pierre, P., Scheel, J., Rickard, J. E. & Kreis, T. E. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887–900 (1992).
    Article CAS Google Scholar
  31. Morrison, E. E., Wardleworth, B. N., Askham, J. M., Markham, A. F. & Meredith, D. M. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17, 3471–3477 (1998).
    Article CAS Google Scholar
  32. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).
    Article CAS Google Scholar
  33. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).
    Article CAS Google Scholar
  34. Vaughan, K. T., Hughes, S. H., Echeverri, C. J., Faulkner, N. F. & Vallee, R. B. Co-localization of dynactin and cytoplasmic dynein with CLIP-170 at microtubule distal ends. J. Cell Sci. 112, 1437–1447 (1999).
    CAS Google Scholar
  35. Berrueta, L., Tirnauer, J. S., Schuyler, S. C., Pellman, D. & Bierer, B. E. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol. 9, 425–428 (1999).
    Article CAS Google Scholar
  36. Paschal, B. M. et al. Characterization of 50 kD polypeptide in cytoplasmic dynein preparations reveals a complex with p150Glued and a novel actin. J. Biol. Chem. 268, 15318–15323 (1993).
    CAS PubMed Google Scholar
  37. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).
    Article CAS Google Scholar
  38. Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science 271, 1539–1544 (1996).
    Article CAS Google Scholar
  39. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998).
    Article CAS Google Scholar
  40. Muhua, L., Adames, N. R., Murphy, M. D., Shields, C. R. & Cooper, J. A. A cytokinesis checkpoint requiring the yeast homologue of an APC- binding protein. Nature 393, 487–491 (1998).
    Article CAS Google Scholar
  41. O'Connell, C. B. & Wang, Y. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell 11, 1765–1774 (2000).
    Article CAS Google Scholar
  42. Hinchcliffe, E. H., Cassels, G. O., Rieder, C. L. & Sluder, G. The coordination of centrosome reproduction with nuclear events of the cell cycle in the sea urchin zygote. J. Cell Biol. 140, 1417–1426 (1998).
    Article CAS Google Scholar
  43. Williams, B. C., Karr, T. L., Montgomery, J. M. & Goldberg, M. L. The Drosophila l(1)zw10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J. Cell Biol. 118, 759–773 (1992).
    Article CAS Google Scholar
  44. Vallee, R. B., Faulkner, N. E. & Tai, C. The role of cytoplasmic dynein in the human brain developmental disease lissencephaly. Biochim. Biophys. Acta 1496, 89–98 (2000).
    Article CAS Google Scholar
  45. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).
    Article CAS Google Scholar
  46. McConnell, S. K. & Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).
    Article CAS Google Scholar
  47. Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131, 1507–1516 (1995).
    Article CAS Google Scholar
  48. Garces, J. A., Clark, I. B., Meyer, D. I. & Vallee, R. B. Interaction of the p62 subunit of dynactin with Arp1 and the cortical actin cytoskeleton. Curr. Biol. 9, 1497–1500 (1999).
    Article CAS Google Scholar
  49. Gilbert, S. Developmental Biology, (Sinauer, Sunderland, Massachusetts, 1994).
    Google Scholar

Download references