Global histone acetylation and deacetylation in yeast (original) (raw)
References
Georgakopoulos, T. & Thireos, G. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J.11, 4145–4152 (1992). ArticleCAS Google Scholar
Brownell, J. E. et al.Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell84, 843–851 ( 1996). ArticleCAS Google Scholar
Drysdale, C. M. et al. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol. Cell. Biol.18, 1711– 1724 (1998). ArticleCAS Google Scholar
Kadosh, D. & Struhl, K. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol.18, 5121–5127 (1998). ArticleCAS Google Scholar
Rundlett, S. E., Carmen, A. A., Suka, N., Turner, B. M. & Grunstein, M. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature392, 831–835 (1998). ArticleADSCAS Google Scholar
Knoepfler, P. S. & Eisenman, R. N. Sin meets NuRD and other tails of repression. Cell99, 447–450 (1999). ArticleCAS Google Scholar
Vidal, M. & Gaber, R. F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol.11, 6317 –6327 (1991). ArticleCAS Google Scholar
Svaren, J. & Hörz, W. Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci.22, 93–97 ( 1997). ArticleCAS Google Scholar
Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell55, 1137–1145 (1988). ArticleCAS Google Scholar
Gregory, P. D. et al. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol. Cell1, 495–505 (1998). ArticleCAS Google Scholar
Solomon, M. J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl Acad. Sci. USA82, 6470– 6474 (1985). ArticleADSCAS Google Scholar
Orlando, V., Strutt, H. & Paro, R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods11, 205– 214 (1997). ArticleCAS Google Scholar
Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev.7, 592–604 (1993). ArticleCAS Google Scholar
Dedon, P. C., Soults, J. A., Allis, C. D. & Gorovsky, M. A. A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal. Biochem.197, 83–90 (1991). ArticleCAS Google Scholar
Hecht, A., Strahl-Bolsinger, S. & Grunstein, M. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature383, 92–96 (1996). ArticleADSCAS Google Scholar
Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev.12, 627–639 ( 1998). ArticleCAS Google Scholar
Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA93, 14503–14508 (1996). ArticleADSCAS Google Scholar
Grant, P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem.274, 5895– 5900 (1999). ArticleCAS Google Scholar
Clarke, A. S., Lowell, J. E., Jacobson, S. J. & Pillus, L. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol.19, 2515– 2526 (1999). ArticleCAS Google Scholar
Wittschieben, B. O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell4, 123–128 (1999). ArticleCAS Google Scholar
Reifnyder, C., Lowell, J., Clarke, A. & Pillus, L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nature Genet.16, 109 (1997). CASPubMed Google Scholar
Ehrenhofer-Murray, A. E., Rivier, D. H. & Rine, J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics145, 923–934 ( 1997). CASPubMedPubMed Central Google Scholar
Parthun, M. R., Widom, J. & Gottschling, D. E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell87, 85–94 ( 1996). ArticleCAS Google Scholar
Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell102, 109–126 (2000). ArticleCAS Google Scholar
Han, M., Kim, U. J., Kayne, P. & Grunstein, M. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae . EMBO J.7, 2221–2228 (1988). ArticleCAS Google Scholar
Schmitt, M. E., Brown, T. A. & Trumpower, B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res.18, 3091–3092 (1990). ArticleCAS Google Scholar
Hecht, A. & Grunstein, M. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol.304, 399– 414 (1999). ArticleCAS Google Scholar
Almer, A., Rudolph, H., Hinnen, A. & Hörz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J.5, 2689–2696 (1986). ArticleCAS Google Scholar
Laman, H., Balderes, D. & Shore, D. Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae . Mol. Cell. Biol.15, 3608– 3617 (1995). ArticleCAS Google Scholar