Multiple reward signals in the brain (original) (raw)
Fibiger, H. C. & Phillips, A. G. in Handbook of Physiology—The Nervous System Vol. IV (ed. Bloom, F. E.) 647– 675 (Williams and Wilkins, Baltimore, Maryland, 1986 ). Google Scholar
Wise, R. A. & Hoffman, D. C. Localization of drug reward mechanisms by intracranial injections. Synapse10, 247–263 (1992). CASPubMed Google Scholar
Robinson, T. E. & Berridge, K. C. The neural basis for drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev.18, 247–291 (1993). CASPubMed Google Scholar
Robbins, T. W. & Everitt, B. J. Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol.6, 228–236 (1996) CASPubMed Google Scholar
Louilot, A., LeMoal, M. & Simon, H. Differential reactivity of dopaminergic neurons in the nucleus accumbens in response to different behavioural situations. An in vivo voltammetric study in free moving rats. Brain Res.397, 395–400 ( 1986). CASPubMed Google Scholar
Church, W. H. & Justice, J. B. Jr, Neill, D. B. Detecting behaviourally relevant changes in extracellular dopamine with microdialysis. Brain Res.41, 397–399 (1987). Google Scholar
Young, A. M. J., Joseph, M. H. & Gray, J. A. Increased dopamine release in vivo in nucleus accumbens and caudate nucleus of the rat during drinking: a microdialysis study. Neuroscience48, 871– 876 (1992). CASPubMed Google Scholar
Wilson, C., Nomikos, G. G., Collu, M. & Fibiger, H. C. Dopaminergic correlates of motivated behaviour: importance of drive. J. Neurosci.15, 5169–5178 (1995). CASPubMed Google Scholar
Fiorino, D. F., Coury, A. & Phillips, A. G. Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J. Neurosci.17, 4849–4855 (1997). CASPubMed Google Scholar
Thut, G. et al. Activation of the human brain by monetary reward. NeuroReport8, 1225–1228 (1997). CASPubMed Google Scholar
Rogers, R. D. et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci.19, 9029–9038 ( 1999) CASPubMed Google Scholar
Elliott, R., Friston, K. J. & Dolan, R. J. Dissociable neural responses in human reward systems . J. Neurosci.20, 6159– 6165 (2000) CASPubMed Google Scholar
Pavlov, P. I. Conditioned Reflexes (Oxford Univ. Press, London, 1927 ). Google Scholar
Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H. and Prokasy, W. F.) 64–99 (Appleton Century Crofts, New York, 1972). Google Scholar
Mackintosh, N. J. A theory of attention: variations in the associability of stimulus with reinforcement . Psychol. Rev.82, 276– 298 (1975). Google Scholar
Pearce, J. M. & Hall, G. A model for Pavlovian conditioning: variations in the effectiveness of conditioned but not of unconditioned stimuli . Psychol. Rev.87, 532– 552 (1980). CAS Google Scholar
Schultz, W. Responses of midbrain dopamine neurons to behavioural trigger stimuli in the monkey. J. Neurophysiol.56, 1439– 1462 (1986). CASPubMed Google Scholar
Romo, R. & Schultz, W. Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements . J. Neurophysiol.63, 592– 606 (1990). CASPubMed Google Scholar
Schultz, W. & Romo, R. Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioural reactions . J. Neurophysiol.63, 607– 624 (1990). CASPubMed Google Scholar
Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioural reactions. J. Neurophysiol.67, 145–163 (1992). CASPubMed Google Scholar
Strecker, R. E. & Jacobs, B. L. Substantia nigra dopaminergic unit activity in behaving cats: effect of arousal on spontaneous discharge and sensory evoked activity. Brain Res.361 , 339–350 (1985). CASPubMed Google Scholar
Horvitz, J. C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience96, 651– 656 (2000). CASPubMed Google Scholar
Mirenowicz, J. & Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature379, 449–451 ( 1996). CASPubMed Google Scholar
Guarraci, F. A. & Kapp, B. S. An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential Pavlovian fear conditioning in the awake rabbit. Behav. Brain Res.99, 169–179 ( 1999). CASPubMed Google Scholar
Schultz, W. Activity of dopamine neurons in the behaving primate. Semin. Neurosci.4, 129–138 ( 1992). Google Scholar
Redgrave, P., Prescott, T. J. & Gurney, K. Is the short-latency dopamine response too short to signal reward? Trends Neurosci.22, 146– 151 (1999). CASPubMed Google Scholar
Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci.1, 304–309 (1998). CASPubMed Google Scholar
Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol.80, 1–27 (1998 ). CASPubMed Google Scholar
Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci.23, 473– 500 (2000). CASPubMed Google Scholar
Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol.72, 1024–1027 (1994). CASPubMed Google Scholar
Schultz, W., Dayan, P. & Montague, R. R. A neural substrate of prediction and reward. Science275, 1593–1599 ( 1997). CASPubMed Google Scholar
Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci.16, 1936–1947 (1996). CASPubMed Google Scholar
Sutton, R. S. & Barto, A. G. Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev.88, 135–170 (1981). This paper proposed a very effective 'temporal difference' reinforcement learning model that computes a prediction error over time. The teaching signal incorporates primary reinforcers and conditioned stimuli, and resembles in all aspects the response of dopamine neurons to rewards and conditioned, reward-predicting stimuli, although dopamine neurons also report novel stimuli. CASPubMed Google Scholar
Tesauro, G. TD-Gammon, a self-teaching backgammon program, achieves master-level play . Neural Comp.6, 215–219 (1994). Google Scholar
Suri, R. E. & Schultz, W. Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp. Brain Res.121, 350–354 (1998). CASPubMed Google Scholar
Suri, R. & Schultz, W. A neural network with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience91, 871–890 (1999). CASPubMed Google Scholar
Schultz, W. & Romo, R. Responses of nigrostriatal dopamine neurons to high intensity somatosensory stimulation in the anesthetized monkey . J. Neurophysiol.57, 201– 217 (1987). CASPubMed Google Scholar
Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S. & Zigmond, M. J. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem.52, 1655–1658 (1989). CASPubMed Google Scholar
Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J. Neurophysiol.61, 814–832 ( 1989). CASPubMed Google Scholar
Apicella, P., Ljungberg, T., Scarnati, E. & Schultz, W. Responses to reward in monkey dorsal and ventral striatum. Exp. Brain Res.85, 491–500 ( 1991). CASPubMed Google Scholar
Apicella, P., Scarnati, E. & Schultz, W. Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp. Brain Res.84, 672–675 (1991). CASPubMed Google Scholar
Lavoie, A. M. & Mizumori, S. J. Y. Spatial-, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats. Brain Res.638, 157–168 ( 1994). CASPubMed Google Scholar
Bowman, E. M., Aigner, T. G. & Richmond, B. J. Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J. Neurophysiol.75, 1061–1073 (1996). CASPubMed Google Scholar
Shidara, M., Aigner, T. G. & Richmond, B. J. Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J. Neurosci.18, 2613–2625 ( 1998). CASPubMed Google Scholar
Matsumura, M., Kojima, J., Gardiner, T. W. & Hikosaka, O. Visual and oculomotor functions of monkey subthalamic nucleus. J. Neurophysiol.67, 1615–1632 (1992). CASPubMed Google Scholar
Schultz, W. Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory and complex events. J. Neurophysiol.55, 660–677 (1986). CASPubMed Google Scholar
Niki, H., Sakai, M. & Kubota, K. Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey. Brain Res.38, 343–353 ( 1972). CASPubMed Google Scholar
Niki, H. & Watanabe, M. Prefrontal and cingulate unit activity during timing behaviour in the monkey. Brain Res.171 , 213–224 (1979). CASPubMed Google Scholar
Rosenkilde, C. E., Bauer, R. H. & Fuster, J. M. Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Res.209, 375 –394 (1981). CASPubMed Google Scholar
Watanabe, M. The appropriateness of behavioural responses coded in post-trial activity of primate prefrontal units. Neurosci. Lett.101, 113–117 (1989). CASPubMed Google Scholar
Tremblay, L. & Schultz, W. Reward-related neuronal activity during go–no go task performance in primate orbitofrontal cortex. J. Neurophysiol.83, 1864–1876 (2000). CASPubMed Google Scholar
Niki, H. & Watanabe, M. Cingulate unit activity and delayed response. Brain Res.110, 381– 386 (1976). CASPubMed Google Scholar
Nishijo, H., Ono, T. & Nishino, H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci.8, 3570–3583 ( 1988).A paper written by one of the few groups investigating neurons in the primate amygdala in relation to reward-related stimuli. They reported a number of different responses to the presentation of natural rewards. CASPubMed Google Scholar
Nakamura, K., Mikami, A. & Kubota, K. Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. J. Neurophysiol.67, 1447–1463 (1992). CASPubMed Google Scholar
Burton, M. J., Rolls, E. T. & Mora, F. Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp. Neurol.51, 668–677 ( 1976). CASPubMed Google Scholar
Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature398, 704– 708 (1999). CASPubMed Google Scholar
Pratt, W. E. & Mizumori, S. J. Y. Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward . Behav. Neurosci.112, 554– 570 (1998). CASPubMed Google Scholar
Thorpe, S. J., Rolls, E. T. & Maddison, S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res.49, 93– 115 (1983). CASPubMed Google Scholar
Rolls, E. T., Murzi, E., Yaxley, S., Thorpe, S. J. & Simpson, S. J. Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey . Brain Res.368, 79–86 (1986). CASPubMed Google Scholar
Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci.1, 53– 60 (1989). PubMed Google Scholar
Rolls, E. T., Scott, T. R., Sienkiewicz, Z. J. & Yaxley, S. The responsiveness of neurons in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J. Physiol.397, 1–12 (1988). CASPubMedPubMed Central Google Scholar
Apicella, P., Legallet, E. & Trouche, E. Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioural states . Exp. Brain Res.116, 456– 466 (1997). CASPubMed Google Scholar
Apicella, P., Ravel, S., Sardo, P. & Legallet, E. Influence of predictive information on responses of tonically active neurons in the monkey striatum. J. Neurophysiol.80, 3341– 3344 (1998). CASPubMed Google Scholar
Apicella, P., Legallet, E. & Trouche, E. Responses of tonically discharging neurons in monkey striatum to visual stimuli presented under passive conditions and during task performance. Neurosci. Lett.203, 147– 150 (1996). CASPubMed Google Scholar
Williams, G. V., Rolls, E. T., Leonard, C. M. & Stern, C. Neuronal responses in the ventral striatum of the behaving monkey. Behav. Brain Res.55, 243–252 (1993). CASPubMed Google Scholar
Aosaki, T. et al. Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioural sensorimotor conditioning. J. Neurosci.14, 3969–3984 (1994). CASPubMed Google Scholar
Apicella, P., Scarnati, E., Ljungberg, T. & Schultz, W. Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J. Neurophysiol.68, 945–960 (1992). CASPubMed Google Scholar
Schultz, W., Apicella, P., Scarnati, E. & Ljungberg, T. Neuronal activity in monkey ventral striatum related to the expectation of reward. J. Neurosci.12, 4595– 4610 (1992). CASPubMed Google Scholar
Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci.1, 155–159 (1998). CASPubMed Google Scholar
Hikosaka, K. & Watanabe, M. Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cerebral Cortex10, 263–271 (2000). CASPubMed Google Scholar
Hollerman, J. R., Tremblay, L. & Schultz, W. Influence of reward expectation on behavior-related neuronal activity in primate striatum. J. Neurophysiol.80, 947–963 (1998). CASPubMed Google Scholar
Tremblay, L., Hollerman, J. R. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate striatum. J. Neurophysiol.80, 964–977 ( 1998). CASPubMed Google Scholar
Tremblay, L. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. J. Neurophysiol.83, 1877–1885 (2000). CASPubMed Google Scholar
Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Animal Learn. Behav.22, 1– 18 (1994). Google Scholar
Okano, K. & Tanji, J. Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement. Exp. Brain Res.66, 155–166 (1987). CASPubMed Google Scholar
Romo, R. & Schultz, W. Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex. Exp. Brain Res.67, 656–662 (1987). CASPubMed Google Scholar
Kurata, K. & Wise, S. P. Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks. Exp. Brain Res.72, 237– 248 (1988). CASPubMed Google Scholar
Schultz, W. & Romo, R. Neuronal activity in the monkey striatum during the initiation of movements. Exp. Brain Res.71, 431–436 (1988). CASPubMed Google Scholar
Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature382, 629–632 (1996). The first demonstration that expected rewards influence the behaviour-related activity of neurons in a manner that is compatible with a goal-directed account. Neurons in primate dorsolateral prefrontal cortex show different activities depending on the expected reward during a typical prefrontal spatial delayed response task. CASPubMed Google Scholar
Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the responses of neurons in the dorsolateral prefrontal cortex of the macaque . Neuron24, 415–425 (1999). CASPubMed Google Scholar
Kawagoe, R., Takikawa, Y. & Hikosaka, O. Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neurosci.1, 411 –416 (1998). CASPubMed Google Scholar
Liu, Z. & Richmond, B. J. Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules . J. Neurophysiol.83, 1677– 1692 (2000).The first demonstration of the prominent reward relationships in neurons of temporal cortex. Neuronal responses to task stimuli in the primate perirhinal cortex were profoundly affected by the distance to reward, whereas neuronal responses in the neighbouring TE area predominantly reflected the visual features of the stimuli. CASPubMed Google Scholar
Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature400, 233–238 (1999).Neurons in primate parietal association cortex were sensitive to two key variables of game theory and decision making: the quantity and the probability of the outcomes. Based on studies of choice behaviour and decision making in human economics and animal psychology, this is the first application of principles of decision theory in primate neurophysiology. CASPubMed Google Scholar
Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward. Science282, 1335–1338 (1998). Neurons in the primate cingulate motor area were active when animals switched to a different movement when continuing to perform the current movement would have produced less reward. This study is interesting from the point of view of movement selection and also for the influence of rewards on behavioural choices. CASPubMed Google Scholar
Kelley, A. E. Functional specificity of ventral striatal compartments in appetitive behaviours . Ann. NY Acad. Sci.877, 71– 90 (1999). CASPubMed Google Scholar
Carelli, R. M., King, V. C., Hampson, R. E. & Deadwyler, S. A. Firing patterns of nucleus accumbens neurons during cocaine self-administration . Brain Res.626, 14–22 (1993).The first demonstration of drug-related changes in neuronal activity in one of the key structures of drug addiction, the nucleus accumbens. Two important neuronal patterns were found in the rat: activity preceding lever presses that led to acquisition of the drug and activity following drug delivery. These findings have been consistently reproduced by other goups. CASPubMed Google Scholar
Chang, J. Y., Sawyer, S. F., Lee, R. S. & Woodward, D. J. Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self-administration in freely moving rats. J. Neurosci.14, 1224–1244 (1994). CASPubMed Google Scholar
Carelli, R. M. & Deadwyler, S. A. A comparison of nucleus accumbens neuronal firing patterns during cocaine self-administration and water reinforcement in rats. J. Neurosci.14, 7735–7746 (1994). CASPubMed Google Scholar
Chang, J. Y., Janak, P. H. & Woodward, D. J. Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J. Neurosci.18, 3098–3115 (1998). CASPubMed Google Scholar
Carelli, R. M., Ijames, S. G. & Crumling, A. J. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus 'natural' (water and food) reward. J. Neurosci.20, 4255–4266 (2000). CASPubMed Google Scholar
Chang, J. Y., Paris, J. M., Sawyer, S. F., Kirillov, A. B. & Woodward, D. J. Neuronal spike activity in rat nucleus accumbens during cocaine self-administration under different fixed-ratio schedules. J. Neurosci.74, 483– 497 (1996). CAS Google Scholar
Peoples, L. L., Uzwiak, A. J., Gee, F. & West, M. O. Operant behaviour during sessions of intravenous cocaine infusion is necessary and sufficient for phasic firing of single nucleus accumbens neurons. Brain Res.757, 280–284 ( 1997). CASPubMed Google Scholar
West, M. O., Peoples, L. L., Michael, A. J., Chapin, J. K. & Woodward, D. J. Low-dose amphetamine elevates movement-related firing of rat striatal neurons. Brain Res.745, 331–335 (1997). CASPubMed Google Scholar
Peoples, L. L. & West, M. O. Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration. J. Neurosci.16, 3459–3473 (1996). CASPubMed Google Scholar
Peoples, L. L., Gee, F., Bibi, R. & West, M. O. Phasic firing time locked to cocaine self-infusion and locomotion: dissociable firing patterns of single nucleus accumbens neurons in the rat. J. Neurosci.18, 7588–7598 (1998). CASPubMed Google Scholar
Calabresi, P., Maj, R., Pisani, A., Mercuri, N. B. & Bernardi, G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci.12, 4224–4233 (1992). CASPubMed Google Scholar
Otmakhova, N. A. & Lisman, J. E. D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J. Neurosci.16, 7478–7486 (1996). CASPubMed Google Scholar
Wickens, J. R., Begg, A. J. & Arbuthnott, G. W. Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience70, 1– 5 (1996). CASPubMed Google Scholar
Calabresi, P. et al. Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J. Neurosci.17, 4536–4544 (1997). CASPubMed Google Scholar